

European Technical Assessment ETA – 09/0286

A Global Network of Experts
www.bbrnetwork.com

ETA-09/0286 BBR VT CONA CMI BT

Internal Post-tensioning System with 02 to 61 Strands

BBR VT International Ltd

Ringstrasse 2, 8603 Schwerzenbach (Switzerland) www.bbrnetwork.com

0432-CPR-00299-1.4/2

Responsible BBR PT Specialist Company

The delivery note accompanying components of the BBR VT CONA CMI BT Post-tensioning System will contain the CE marking.

Assembly and installation of BBR VT CONA CMI BT tendons must only be carried out by qualified BBR PT Specialist Companies. Find the local BBR PT Specialist Company by visiting the BBR Network website www.bbrnetwork.com.

European Organisation for Technical Approvals Europäische Organisation für Technische Zulassungen Organisation Européenne pour l'Agrément technique

ETAG 013

Guideline for European Technical Approval of Post-tensioning Kits for Prestressing of Structures

CWA 14646

Requirements for the installation of post-tensioning kits for prestressing of structures and qualification of the specialist company and its personnel

BBR E-Trace is the trading and quality assurance platform of the BBR Network linking the Holder of Approval, BBR VT International Ltd, BBR PT Specialist Companies and the BBR Manufacturing Plant. Along with the established BBR Factory Production Control, BBR E-Trace provides effective supply chain management including installation, delivery notes and highest quality standards, as well as full traceability of components.

European Technical Assessment

ETA-09/0286 of 19.09.2018

General part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) № 305/2011, on the basis of

This European Technical Assessment replaces

Österreichisches Institut für Bautechnik (OIB) Austrian Institute of Construction Engineering

BBR VT CONA CMI BT – Internal Posttensioning System with 02 to 61 Strands

Bonded or unbonded post-tensioning kits for prestressing of structures with strands

BBR VT International Ltd Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

BBR VT International Ltd Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

60 pages including Annexes 1 to 33, which form an integral part of this assessment.

EAD 160004-00-0301, European Assessment Document for Post-Tensioning Kits for Prestressing of Structures.

European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018.

Table of contents

Page 2 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

EUROPEAN TECHNICAL ASSESSMENT ETA-09/0286 OF 19.09.2018	1
GENERAL PART	1
TABLE OF CONTENTS	2
REMARKS	6
SPECIFIC PARTS	6
1 TECHNICAL DESCRIPTION OF THE PRODUCT	6
1.1 General	6
PT system	7
1.2 Designation and range of anchorages and couplers	7
1.2.1 General	7
1.2.2 Designation	7
1.2.3 Anchorage, FA or SA	7
1.2.3.1 General	
1.2.3.2 Restressable and exchangeable tendon	
1.2.4 Fixed and stressing coupler	
1.2.4.1 General	
1.2.4.2 Single plane coupler, FK or SK	
1.2.5 Moveable coupler, BK or BH	
1.2.6 Layout of the anchorage recess	
1.3 Designation and range of the tendons	
1.3.1 Designation	
1.3.2 Range	
1.3.2.1 General	
1.3.2.2 CONA CMI BT n06-140	
1.3.2.3 CONA CMI BT n06-150	10
1.4 Duct	10
1.4.1 Use of duct	10
1.4.2 Degree of filling	11
1.4.3 Circular steel strip sheath	11
1.4.4 Flat corrugated steel duct	11
1.4.5 Pre-bent smooth circular steel duct	11
1.5 Friction losses	11
1.6 Support of tendon	12
1.7 Slip at anchorage and coupler	12
1.8 Centre spacing and edge distance for the anchorage	13
1.9 Minimum radii of curvature	13
1.10 Concrete strength at time of stressing	14

electronic copy

Page 3 of European Technical Assessment ETA-09/0286 of 19.09.2018
replaces European technical approval ETA-09/0286
with validity from 30.06.2013 to 29.06.2018

COMPONENTS	14
1.11 Prestressing steel strands	14
1.12 Anchorage and coupler	15
1.12.1 General	15
1.12.2 Anchor head	15
1.12.3 Bearing trumplate	15
1.12.4 Trumpet	15
1.12.5 Coupler anchor head	15
1.12.6 Ring wedge	16
1.12.7 Helix and additional reinforcement	16
1.12.8 Protection cap	16
1.12.9 Material specifications	16
1.13 Permanent corrosion protection	16
2 SPECIFICATION OF THE INTENDED USES IN ACCORDANCE WITH THE APPLICABLE EUROPEAN ASSESSMENT DOCUMENT (HEREINAFTER EAD)	17
2.1 Intended uses	
2.2 Assumptions	
2.2.1 General	
2.2.2 Packaging, transport, and storage	
2.2.3 Design	
2.2.3.1 General	
2.2.3.2 Fixed and stressing coupler	
2.2.3.3 Anchorage Recess	
2.2.3.4 Maximum prestressing forces	18
2.2.3.5 Centre spacing, edge distance, and reinforcement in the anchorage zone	
2.2.3.6 Tendons in masonry structures – load transfer to the structure	19
2.2.4 Installation	
2.2.4.1 General	
2.2.4.2 Stressing operation	
2.2.4.3 Restressing	
2.2.4.4 Exchanging tendons	
2.2.4.5.1 Grouting	
2.2.4.5.2 Filling with grease, wax, and an equivalent soft material	
2.2.4.5.3 Circulating dry air	
2.2.4.5.4 Filling records	21
2.2.4.6 Welding	21
2.3 Assumed working life	21
3 PERFORMANCE OF THE PRODUCT AND REFERENCES TO THE METHODS USED FOR ITS ASSESSMENT	21
3.1 Essential characteristics	21
3.2 Product performance	23
3.2.1 Mechanical resistance and stability	23

Page 4 of European Technical Assessment ETA-09/0286 of 19.09.2018,
replaces European technical approval ETA-09/0286
with validity from 30.06.2013 to 29.06.2018

3.2.1.1 R	esistance to static load	23
3.2.1.2 R	esistance to fatigue	23
3.2.1.3 Lo	oad transfer to the structure	23
3.2.1.4 Fr	riction coefficient	23
	eviation, deflection (limits) for internal bonded and internal unbonded tendon	
	ssessment of assembly	
	orrosion protection	
	fety in case of fire	
	eaction to fire	
	giene, health and the environment	
	ontent, emission and/or release of dangerous substances	
	chanical resistance and stability	24
ar	esistance to static load under cryogenic conditions for applications with nchorage/coupling outside the possible cryogenic zone	
3.3 Ass	sessment methods	24
3.4 Ide	ntification	24
	ESSMENT AND VERIFICATION OF CONSTANCY OF PERFORMANCE (HEREINAFTER AVCP) TEM APPLIED, WITH REFERENCE TO ITS LEGAL BASE	24
4.1 Sys	stem of assessment and verification of constancy of performance	24
	CP for construction products for which a European Technical Assessment has been ued	25
	HNICAL DETAILS NECESSARY FOR THE IMPLEMENTATION OF THE AVCP SYSTEM, AS PROVIDED IN THE APPLICABLE EAD	25
5.1 Tas	sks for the manufacturer	25
5.1.1 Fac	ctory production control	25
5.1.2 Dec	claration of performance	26
5.2 Tas	sks for the notified product certification body	26
5.2.1 Initi	ial inspection of the manufacturing plant and of factory production control	26
5.2.2 Coi	ntinuing surveillance, assessment, and evaluation of factory production control	26
5.2.3 Au	dit-testing of samples taken by the notified product certification body at the nufacturing plant or at the manufacturer's storage facilities	
ANNEXES .		28
ANNEX 1	OVERVIEW ON ANCHORAGES AND COUPLERS	28
ANNEX 2	ANCHOR HEADS	29
ANNEX 3	COUPLER K AND TRUMPET K	30
ANNEX 4	Coupler H	
ANNEX 5	BEARING TRUMPLATE AND TRUMPET A	
ANNEX 6	WEDGES AND ACCESSORIES	
ANNEX 7	TENDON RANGES FOR CONA CMI BT N06-140	
ANNEX 8	TENDON RANGES FOR CONA CMI BT N06-150	
ANNEX 9	MINIMUM RADIUS OF CURVATURE OF FLAT DUCT	
ANNEX 10	MINIMUM RADIUS OF CURVATURE OF CIRCULAR DUCT FOR PR, MAX = 200 KN/M	37

electronic copy

Page 5 of European Technical Assessment ETA-09/0286 of 19.09.2018,
replaces European technical approval ETA-09/0286
with validity from 30.06.2013 to 29.06.2018

MININE A I	IMINIMON RADIUS OF CURVATURE OF CIRCULAR DUCT FOR FR, MAX - 140 KIM/M	50
ANNEX 12	MINIMUM CENTRE SPACING	39
ANNEX 13	MINIMUM EDGE DISTANCE	40
ANNEX 14	MATERIAL SPECIFICATIONS	41
ANNEX 15	MAXIMUM PRESTRESSING AND OVERSTRESSING FORCES	42
ANNEX 16	CONSTRUCTION STAGES	43
ANNEX 17	MINIMUM CONCRETE STRENGTH — HELIX — ADDITIONAL REINFORCEMENT — CENTRE SPACING AND EDGE DISTANCE	44
ANNEX 18	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	45
ANNEX 19	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	46
ANNEX 20	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	47
ANNEX 2	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	48
ANNEX 22	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	49
ANNEX 23	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	50
ANNEX 24	MINIMUM CONCRETE STRENGTH – HELIX – ADDITIONAL REINFORCEMENT – CENTRE SPACING AND EDGE DISTANCE	51
ANNEX 25	MODIFICATION OF CENTRE SPACING AND EDGE DISTANCE	52
ANNEX 26	DESCRIPTION OF INSTALLATION	53
ANNEX 27	DESCRIPTION OF INSTALLATION	54
ANNEX 28	PRESTRESSING STEEL STRAND SPECIFICATIONS	55
ANNEX 29	CONTENTS OF THE PRESCRIBED TEST PLAN	56
ANNEX 30	AUDIT TESTING	57
ANNEX 3	ESSENTIAL CHARACTERISTICS FOR THE INTENDED USES	58
ANNEX 32	REFERENCE DOCUMENTS	59
ANNEX 33	REFERENCE DOCUMENTS	60

Page 6 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Remarks

Translations of the European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of the European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of Österreichisches Institut für Bautechnik. Any partial reproduction has to be identified as such.

Specific parts

Technical description of the product

General

The European Technical Assessment¹ – ETA – applies to a kit, the PT system

BBR VT CONA CMI BT - Internal Post-tensioning System with 02 to 61 Strands,

comprising the following components, see Annex 1, Annex 2, Annex 3, Annex 4, Annex 5, and Annex 6.

Tendon

Internal tendon with 02 to 61 tensile elements

Tensile element

7-wire prestressing steel strand with nominal diameters and maximum characteristic tensile strength as given in Table 1

Tensile elements Table 1

Nominal diameter	Nominal cross-sectional area	Maximum characteristic tensile strength	
mm	mm²	MPa	
15.3	140	1 960	
15.7	150	1 860	

NOTE $1 \text{ MPa} = 1 \text{ N/mm}^2$

Anchorage and coupler

Anchorage of the prestressing steel strands with ring wedges

End anchorage

Fixed (passive) anchor or stressing (active) anchor as end anchorage, FA or SA, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

ETA-09/0286 was firstly issued in 2010 as European technical approval with validity from 17.05.2010, amended in 2010 with validity from 29.09.2010, extended in 2013 with validity from 30.06.2013, and converted in 2018 to European Technical Assessment ETA-09/0286 of 19.09.2018.

Page 7 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Fixed or stressing coupler

Single plane coupler, FK or SK, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, and 31 prestressing steel strands

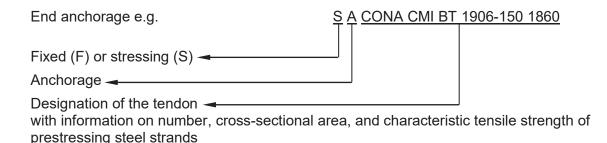
Sleeve coupler, FH or SH, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

Moveable coupler

Single plane coupler, BK, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, and 31 prestressing steel strands

Sleeve coupler, BH, for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands

- Bearing trumplate for tendons with 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, and 61 prestressing steel strands
- Helix and additional reinforcement in the region of the anchorage
- Corrosion protection for tensile elements, anchorages, and couplers


PT system

1.2 Designation and range of anchorages and couplers

1.2.1 General

End anchorages can be fixed or stressing anchorages. Couplers are fixed, stressing, or moveable. The principal dimensions of anchorages and couplers are given in Annex 2, Annex 3, Annex 4, Annex 5, Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24.

1.2.2 Designation

Coupler e.g.

Fixed (F), stressing (S) or moveable (B)

Coupler anchor head (K or H)

Designation of the tendon

with information on number, cross-sectional area, and characteristic tensile strength of prestressing steel strands

1.2.3 Anchorage, FA or SA

1.2.3.1 General

Anchorage of prestressing steel strands is achieved by wedges and anchor heads, see Annex 1, Annex 2, and Annex 6. The anchor heads of the fixed and stressing anchorage are identical. A differentiation is needed for the construction works.

Page 8 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

The wedges of inaccessible fixed anchors are secured with either a wedge retaining plate or springs and a wedge retaining plate. An alternative is pre-locking each individual prestressing steel strand with $\sim 0.5 \cdot F_{pk}$ and applying a wedge retaining plate.

1.2.3.2 Restressable and exchangeable tendon

Significant to a restressable and exchangeable tendon is the excess length of the prestressing steel strands, see Annex 1. The extent of the excess length depends on the jack used for restressing or releasing. The protrusions of the prestressing steel strands require a permanent corrosion protection and an adapted cap.

1.2.4 Fixed and stressing coupler

1.2.4.1 General

Anchorage of prestressing steel strands is achieved by wedges and coupler anchor heads, see Annex 1, Annex 3, Annex 4, and Annex 6.

1.2.4.2 Single plane coupler, FK or SK

The coupling is achieved by means of a coupler anchor head K. The prestressing steel strands of the first construction stage are anchored by means of wedges in machined cones, drilled in parallel. The arrangement of the cones of the first construction stage is identical to that of the anchor head of a fixed or stressing anchorage. The prestressing steel strands of the second construction stage are anchored in a circle around the cones of the first construction stage by means of wedges in machined cones, drilled at an inclination of 7°. The wedges for the second construction stage are secured by means of holding springs and a cover plate.

1.2.4.3 Sleeve coupler, FH or SH

The coupler anchor head H is of the same basic geometry as the anchor head of the fixed or stressing anchorage. Compared to the anchor head of the fixed or stressing anchorage, the coupler anchor head H is higher and provide an external thread for the coupler sleeve. The wedges for the second construction stage are secured by means of a wedge retaining plate.

The connection between the coupler anchor heads H of the first and second construction stages is achieved by means of a coupler sleeve.

1.2.5 Moveable coupler, BK or BH

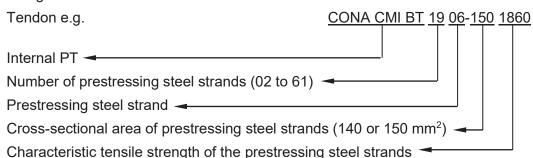
Anchorage of prestressing steel strands is achieved by wedges and coupler anchor heads, see Annex 1, Annex 3, Annex 4, and Annex 6. The moveable coupler is either a single plane coupler or a sleeve coupler in a coupler sheathing made of steel or plastic. Length and position of the coupler sheathing are for the expected elongation displacement, see Clause 2.2.4.

The coupler anchor heads and the coupler sleeve of the moveable coupler are identical to the coupler anchor heads and the coupler sleeve of the fixed or stressing coupler. The wedges for the first construction stage are secured by means of a wedge retaining plate and the wedges of the second construction stage are secured by wedge retaining plate or holding springs and cover plate.

A 100 mm long and at least 3.5 mm thick PE-HD insert is installed at the deviating point at the end of the trumpet. The insert is not required for plastic trumpets where the ducts are slipped over the plastic trumpet.

Page 9 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

1.2.6 Layout of the anchorage recess


All bearing trumplates, anchor heads, and coupler anchor heads are placed perpendicular to the axis of the tendon, see Annex 16.

The dimensions of the anchorage recess are adapted to the prestressing jacks used. The ETA holder saves for reference information on the minimum dimensions of the anchorage recess.

The formwork for the anchorage recess should be slightly conical for ease of removal. In case of an internal anchorage fully embedded in concrete, the recess is designed so as to permit a reinforced concrete cover with the required dimensions and in any case with a thickness of at least 20 mm. In case of an exposed anchorage, see Annex 16, concrete cover on anchorage and bearing trumplate is not required. However, the exposed surfaces of bearing trumplate and steel cap are provided with corrosion protection.

Designation and range of the tendons

1.3.1 Designation

The tendons comprise 02 to 61 tensile elements, 7-wire prestressing steel strands according to Annex 28.

1.3.2 Range

1.3.2.1 General

Prestressing and overstressing forces are given in the corresponding standards and regulations in force at the place of use. The maximum prestressing and overstressing forces according to Eurocode 2 are listed in Annex 15.

The tendons consist of 02, 03, 04, 05, 06, 07, 08, 09, 12, 13, 15, 16, 19, 22, 24, 25, 27, 31, 37, 42, 43, 48, 55, or 61 prestressing steel strands. By omitting prestressing steel strands in the anchorages and couplers in a radially symmetrical way, also tendons with numbers of prestressing steel strands lying between the numbers given above can be installed. Any unnecessary hole either remains undrilled or is provided with a short piece of prestressing steel strand and a wedge is inserted. For coupler anchor head K the cones of the outer pitch circle, second construction stage, may be equally redistributed if prestressing steel strands are omitted. However, the overall dimensions of the coupler anchor head K remain unchanged.

With regard to dimensions and reinforcement, anchorages and couplers with omitted prestressing steel strands remain unchanged compared to anchorages and couplers with a full number of prestressing steel strands.

1.3.2.2 CONA CMI BT n06-140

7-wire prestressing steel strand

Nominal diameter	mm
Nominal cross-sectional area 140	$\mathrm{mm^2}$
Maximum characteristic tensile strength	MPa

Annex 7 lists the available tendon range for CONA CMI BT n06-140.

1.3.2.3 CONA CMI BT n06-150

7-wire prestressing steel strand

Annex 8 lists the available tendon range for CONA CMI BT n06-150.

1.4 Duct

1.4.1 Use of duct

For a bonded tendon a corrugated steel duct is used.

For special application, such as loop tendon and unbonded tendon, a smooth duct is used.

Alternatively, a corrugated or smooth plastic duct may be used as well, if permitted at the place of use. Minimum wall thicknesses are given in Table 3.

Table 2 Steel ducts, minimum wall thickness, t_{min}

Number of prestressing steel strands	Wall thickness	
n	t _{min}	
_	mm	
02–13	1.5	
15–25	2.0	
27–37	2.5	
42–61	3.0	

Table 3 Plastic ducts, minimum wall thickness, t_{min}

Number of	Corrugated plastic duct		Smooth plastic duct	
strands	Maximum degree of filling	Minimum wall thickness	Maximum degree of filling	Minimum wall thickness
n	f	t _{min}	f	t _{min}
	_	mm		mm
02–04	0.3	2.0	0.25	3.0
05–07	0.4	2.0	0.3	3.6
08–12	0.4	2.5	0.35	4.3
13–15	0.4	2.5	0.35	5.3
16–22	0.4	3.0	0.35	6.0
23–27	0.4	3.5	0.35	6.7
28–37	0.4	4.0	0.35	7.7
38–48	0.45	4.5	0.35	8.6
49–55	0.45	5.0	0.35	9.6
56–61	0.45	5.5	0.35	10.8

Page 11 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

1.4.2 Degree of filling

The degree of filling, f, for a circular duct is generally between 0.35 and 0.50. However, the smaller values of degree of filling, 0.35 to 0.40, are used for long tendons or if the tensile elements are installed after concreting. The minimum radius of curvature can be defined with the equation given in Clause 1.9. Typical degrees of filling, f, and corresponding minimum radii of curvature, R_{min} , are given in Annex 9, Annex 10, and Annex 11. The degree of filling is defined as

 $f = \frac{\text{cross-sectional area of prestressing steel}}{\text{cross-sectional area of inner diameter of sheath}}$

1.4.3 Circular steel strip sheath

Steel strip sheath in conformity with EN 523², with minimum wall thicknesses according to Table 2, is used. For diameters exceeding EN 523 the requirements are met analogous. The degree of filling, f, is according to Clause 1.4.2 and the minimum radius of curvature to Clause 1.9.

Annex 10 and Annex 11 give internal duct diameters and minimum radii of curvature in which $p_{R, max}$ has been set to 200 kN/m and 140 kN/m respectively. Smaller radii of curvature are acceptable according to the respective standards and regulations in force at the place of use.

1.4.4 Flat corrugated steel duct

For a tendon with 2, 3, 4, or 5 prestressing steel strands, a flat duct may be used, whereas EN 523 applies accordingly. Inner dimensions of the duct and the minimum radii of curvature are defined in Annex 9.

Annex 9 gives minor and major internal flat duct diameters and minimum radii of curvature, both minor and major, in which $p_{R, max}$ has been set to 200 kN/m and 140 kN/m respectively. Smaller radii of curvature are acceptable according to the respective standards and regulations in force at the place of use.

1.4.5 Pre-bent smooth circular steel duct

If permitted at the place of use, a smooth steel duct according to EN 10255, EN 10216-1, EN 10217-1, EN 10219-1, or EN 10305-5 is used. The degree of filling, f, conforms to Clause 1.4.2 and the minimum radius of curvature to Clause 1.9. The duct is pre-bent and free of any kinks. The minimum radii of curvature, R_{min} , is according to Clause 1.9. The minimum wall thickness of the steel duct meets the specification of Table 2.

1.5 Friction losses

For calculation of loss of prestressing force due to friction, Coulomb's law applies. Calculation of friction loss is by the equation

$$F_x = F_0 \cdot e^{-\mu \cdot (\alpha + k \cdot x)}$$

Where

F_x......kN......Prestressing force at a distance x along the tendon

 F_0kNPrestressing force at x = 0 m

 μ rad⁻¹ Friction coefficient, see Table 4

 αrad.........Sum of angular displacements over distance x, irrespective of direction or sign

k rad/m......Wobble coefficient, see Table 4

Standards and other documents referred to in the European Technical Assessment are listed in Annex 32 and Annex 33.

Page 12 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

NOTE 1 1 rad = 1 m/m = 1

NOTE 2 As far as acceptable at the place of use, due to special measures like oiling or for a tendon layout with only few deviations the friction coefficient can be reduced by 10 to 20 %. Compared to e.g. the use of prestressing steel or sheaths with a film of rust this value increases by more than 100 %.

 Table 4
 Friction parameters

	Recommended values		Range of values	
Duct	μ	k	μ	k
	rad ⁻¹	rad/m	rad ⁻¹	rad/m
Steel strip duct	0.18	0.005	0.17–0.19	
Smooth steel duct	0.18		0.16-0.24	0.004–0.007
Corrugated plastic duct	0.12	0.005	0.10-0.14	0.004-0.007
Smooth plastic duct	0.12		0.10-0.14	

Friction loss in stressing anchorage and stressing coupler first construction stage are given in Table 5. The loss is taken into account for determination of elongation and prestressing force along the tendon.

 Table 5
 Friction losses in anchorages

Tendon	Friction loss					
CONA CMI BT 0206 to 0406			1.2			
CONA CMI BT 0506 to 0906	۸.	%	1.1			
CONA CMI BT 1206 to 3106	ΔFs	70	0.9			
CONA CMI BT 3706 to 6106			0.8			

Where

 ΔF_s %.........Friction loss in stressing anchorage and first construction stage of stressing coupler.

1.6 Support of tendon

Spacing of supports is between 1.0 and 1.8 m. In the region of maximum tendon curvature, a spacing of 0.8 m is applied and 0.6 m in case the minimum radius of curvature is smaller than 4.0 m. The tendons are systematically fastened in their position so that they are not displaced by placing and compacting of concrete.

1.7 Slip at anchorage and coupler

Slip at stressing and fixed anchorages and at fixed and stressing couplers, first and second construction stages, is 6 mm. Slip at moveable couplers is twice this amount. At the stressing anchorage and at the first construction stage of the stressing couplers, slip is 4 mm, provided a prestressing jack with a wedging system and a wedging force of around 25 kN per prestressing steel strand is used.

Page 13 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

1.8 Centre spacing and edge distance for the anchorage

In general, spacing and distances are not less than given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also Annex 12 and Annex 13.

However, a reduction of up to 15 % of the centre spacing of tendon anchorages in one direction is permitted, but should not be less than the outside diameter of the helix and placing of additional reinforcement still is possible, see Annex 25. In this case, spacing in the perpendicular direction is increased by the same percentage. The corresponding edge distance is calculated by

$$a_e = \frac{a_c}{2} - 10 \text{ mm} + c$$

$$a_{\underline{e}} = \frac{a_{\underline{c}}}{2} - 10 \text{ mm} + c$$

$$b_e = \frac{b_c}{2} - 10 \text{ mm} + c$$

$$b_{\underline{e}} = \frac{b_{\underline{c}}}{2} - 10 \text{ mm} + c$$

Where

a_c, a_c.......mm........... Centre spacing before and after modification

 b_c , b_cmm............Centre spacing in the direction perpendicular to a_c before and after modification

a_e, a_e......mm........ Edge distance before and after modification

b_e, b_e........mm.......... Edge distance in the direction perpendicular to a_e before and after modification

c Concrete cover

Standards and regulations on concrete cover in force at the place of use are observed.

The minimum values for a_c, b_c, a_e, and b_e are given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24.

1.9 Minimum radii of curvature

The minimum radii of curvature of the tendon, R_{min} , given in Annex 9, Annex 10, and Annex 11 correspond to

- a prestressing force of the tendon of 0.85 · F_{p0.1} per prestressing steel strand Y1860S7
- a nominal diameter of the prestressing steel strand of d = 15.7 mm
- a maximum pressure under the prestressing steel strands of $p_{R, max}$ = 200 kN/m and 140 kN/m
- a concrete compressive strength of $f_{cm, 0, cube} = 23 \text{ MPa}$.

In case of different tendon parameters or a different pressure under the prestressing steel strands, the calculation of the minimum radius of curvature of the tendon with circular duct can be carried out using the equation

$$R_{min} = \frac{2 \cdot F_{pm, 0} \cdot d}{d_i \cdot p_{R max}}$$

Where

 $F_{pm,\,0}$ kN.....Prestressing force of the tendon

d_i...... Nominal inner duct diameter

p_{R, max} kN/m...... Maximum pressure under the prestressing steel strands

Page 14 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

For tendons with predominantly static loading, reduced minimum radii of curvature can be used. Recommended values for the pressure under the prestressing steel strands are

 $p_{R, max}$ = 140–200 kN/m for internal bonded tendons

p_{R, max} = 800 kN/m for smooth steel duct and predominantly static loading

In case of reduced minimum radius of curvature, the degree of filling, f, as defined in Clause 1.4.2, is between 0.25 and 0.30 to allow for proper tendon installation. Depending on the concrete strength at the time of stressing, additional reinforcement for splitting forces may be required in the areas of reduced minimum radius of curvature.

Standards and regulations on minimum radius of curvature or on the pressure under the prestressing steel strands in force at the place of use are observed.

1.10 Concrete strength at time of stressing

Concrete in conformity with EN 206 is used. At the time of stressing, the mean concrete compressive strength, $f_{\text{cm},\,0}$, is at least according to Table 6. The concrete test specimens are subjected to the same curing conditions as the structure.

For partial stressing with 30 % of the full prestressing force, the actual mean concrete compressive strength is at least $0.5 \cdot f_{\text{cm, 0, cube}}$ or $0.5 \cdot f_{\text{cm, 0, cylinder}}$. Intermediate values may be interpolated linearly according to Eurocode 2.

Helix, additional reinforcement, centre spacing and edge distance corresponding to the concrete compressive strengths are taken from Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also the Clauses 1.12.7 and 2.2.3.5.

 Table 6
 Compressive strength of concrete

Mean concrete strength	f _{cm, 0}							
Cube strength, f _{cm, 0, cube} 150 mm cube	MPa	23	28	34	38	43		
Cylinder strength, f _{cm, 0, cylinder} 150 mm cylinder diameter	MPa	19	23	28	31	35		

Where

 $f_{\text{cm, 0, cube 150}}$Mean concrete compressive strength at time of stressing, determined at cubes, 150 mm

 $f_{\text{cm, 0, cylinder} \, \varnothing \, 150}$ Mean concrete compressive strength at time of stressing, determined at cylinders, diameter 150 mm

Components

1.11 Prestressing steel strands

Only 7-wire prestressing steel strands with characteristics according to Table 7 are used, see also Annex 28.

In a single tendon only prestressing steel strands spun in the same direction are used.

In the course of preparing the European Technical Assessment, no characteristic has been assessed for prestressing steel strands. In execution, a suitable prestressing steel strand that conforms to Annex 28 and is according to the standards and regulations in force at the place of use is taken.

Table 7 Prestressing steel strands

Maximum characteristic tensile strength 1)	f_{pk}	MPa	18	860
Nominal diameter	d	mm	15.3	15.7
Nominal cross-sectional area	A_p	mm ²	140	150
Mass of prestressing steel	М	kg/m	1.093	1.172

¹⁾ Prestressing steel strands with a characteristic tensile strength below 1 860 MPa may also be used.

1.12 Anchorage and coupler

1.12.1 General

The components of anchorage and coupler are in conformity with the specifications given in Annex 2, Annex 3, Annex 4, Annex 5, and Annex 6 and the technical file³. Therein the component dimensions, materials and material identification data with tolerances are given.

1.12.2 Anchor head

The anchor head, A1 to A8, is made of steel and provides regularly arranged conical holes drilled in parallel to accommodate prestressing steel strands and wedges, see Annex 2. The back exits of the bore holes are provided with bell mouth openings or plastic ring cushions. In addition, threaded bores may be provided to attach a protection cap and springs A, see Annex 1 and Annex 6, and wedge retaining plate KS, see Annex 1 and Annex 6.

At the back of the anchor head there may be a step, for ease of centring the anchor head on the bearing trumplate.

1.12.3 Bearing trumplate

The bearing trumplate made of cast iron transmits the force via three anchorage planes to the concrete, see Annex 5. Air-vents are situated at the top and at the interface plane to the anchor head. A ventilation tube can be fitted to these air-vents. On the tendon-side end there is an inner thread to accommodate the trumpet.

1.12.4 Trumpet

The conical trumpet A, see Annex 5, and conical trumpet K, see Annex 3, is made either in steel or in PE.

The trumpet manufactured in steel has a corrugated or plain surface. In case the transition from trumpet to duct is made in steel, a 100 mm long and at least 3.5 mm thick PE-HD insert is installed at the deviating point of the prestressing steel strands.

The conical trumpet made of PE may have either a corrugated or a plain surface. At the duct-side end there is a radius for the deviation of the prestressing steel strands and a smooth surface, to ensure a good transition to the duct. The opposite end is connected to the bearing trumplate or coupler anchor head K.

1.12.5 Coupler anchor head

The coupler anchor head K, see Annex 3, for the single plane coupler is made of steel and provides in the inner part, for anchorage of the prestressing steel strands of the first construction stage, the same arrangement of holes as the anchor head for the stressing or fixed anchorage. In the outer pitch circle there is an arrangement of holes with an inclination of 7 ° to accommodate the prestressing steel strands of the second construction stage. At the back of coupler anchor head K there is a step for ease of centring the coupler anchor head on the

³ The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

Page 16 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

bearing trumplate. Wedge retaining plate KS, see Annex 6, and springs K, see Annex 6, with cover plate K, see Annex 3, are fastened by means of additional threaded bores.

The coupler anchor heads H1 or H2 for the sleeve coupler are made of steel and have the same basic geometry as the anchor head of the stressing or fixed anchorage, see Annex 4. Compared to the anchor head of the stressing and fixed anchorage, the coupler anchor head H is higher and provide an external thread for the coupler sleeve. At the back of the coupler anchor head H1 and H2 there is a step for ease of centring the coupler anchor head on the bearing trumplate. Wedge retaining plate KS, see Annex 6, is fastened by means of additional threaded bores.

The coupler sleeve H is a steel tube, see Annex 4, with an inner thread and is provided with ventilation holes.

Ring cushions, see Annex 4, are inserted in coupler anchor head H2.

1.12.6 Ring wedge

The ring wedge, see Annex 6, is in three pieces. Two different ring wedges are used.

- Ring wedge H in three pieces, fitted with spring ring
- Ring wedge F in three pieces, without spring ring or fitted with spring ring

Within one anchorage or coupler only one of these ring wedges is used.

The wedges of an inaccessible fixed anchorage are secured with either a wedge retaining plate or springs and a wedge retaining plate. An alternative is pre-locking each individual prestressing steel strand with $\sim 0.5 \cdot F_{pk}$ and applying a wedge retaining plate as per Clause 1.2.3.1. In couplers the wedges are secured with wedge retaining plate and cover plate.

1.12.7 Helix and additional reinforcement

Helix and additional reinforcement are made of ribbed reinforcing steel. The end of the helix on the anchorage side is welded to the following turn. The helix is placed in the tendon axis. Dimensions of helix and additional reinforcement conforms to the values specified in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, see also Clause 2.2.3.5.

If required for a specific project design, the reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 may be modified in accordance with the respective regulations in force at the place of use as well as with the relevant approval of the local authority and of the ETA holder to provide equivalent performance.

1.12.8 Protection cap

The protection cap is made of steel or plastic. It is provided with air vents and fastened with screws or threaded rods.

1.12.9 Material specifications

Annex 14 lists the material standards or specifications of the components.

1.13 Permanent corrosion protection

In the course of preparing the European Technical Assessment no characteristic has been assessed for components and materials of the corrosion protection system. In execution, all components and materials are selected according to the standards and regulations in force at the place of use.

Corrosion protection of the bonded tendon is provided by completely filling duct, anchorage, and coupler with grout according to EN 447, special grout according to EAD 160027-00-0301, or ready-mixed grout with an adequate composition according to standards and regulations in force at the place of use.

Page 17 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

To protect an unbonded tendons from corrosion, ducts, couplers, and anchorages are completely filled with corrosion protection filling material as applicable at the place of use. Applicable corrosion protection filling materials are grease, wax, or an equivalent soft material. Actively circulating dry air allows for corrosion protection of a tendon as applicable at the place of use.

In case of an anchorage fully embedded in concrete, the recess is designed as to permit a reinforced concrete cover with the required dimensions and in any case with a thickness of at least 20 mm. With an exposed anchorage or with an anchorage with insufficiently thick concrete cover, the surfaces of bearing trumplate and steel cap are provided with corrosion protection.

2 Specification of the intended uses in accordance with the applicable European Assessment Document (hereinafter EAD)

2.1 Intended uses

The BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is intended to be used for the prestressing of structures. The specific intended uses are listed in Table 8.

Table 8 Intended uses

Line №	Use category
Use cate	egories according to tendon configuration and material of structure
1	Internal bonded tendon for concrete and composite structures
2	Internal unbonded tendon for concrete and composite structures
Optional	use category
3	Internal tendon for cryogenic applications with anchorage outside the possible cryogenic zone

2.2 Assumptions

2.2.1 General

Concerning product packaging, transport, storage, maintenance, replacement, and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on transport, storage, maintenance, replacement, and repair of the product as he considers necessary.

2.2.2 Packaging, transport, and storage

Advice on packaging, transport, and storage includes.

- During transport of prefabricated tendons, a minimum diameter of curvature of
 - 1.65 m for tendons up to CONA CMI BT 1206,
 - 1.80 m for tendons up to CONA CMI BT 3106,
 - 2.00 m for tendons larger than CONA CMI BT 3106, of prestressing steel strand is observed.
- Temporary protection of prestressing steel and components in order to prevent corrosion during transport from production site to job site
- Transportation, storage and handling of prestressing steel and other components in a manner as to avoid damage by mechanical or chemical impact
- Protection of prestressing steel and other components from moisture
- Keeping tensile elements separate from areas where welding operations are performed

Page 18 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

2.2.3 Design

2.2.3.1 General

It is the responsibility of the ETA holder to ensure that all necessary information on design and installation is submitted to those responsible for the design and execution of the structures executed with "BBR VT CONA CMI BT - Internal Post-tensioning System with 02 to 61 Strands".

Design of the structure permits correct installation and stressing of the tendons. The reinforcement in the anchorage zone permits correct placing and compacting of concrete.

2.2.3.2 Fixed and stressing coupler

The prestressing force at the second construction stage may not be greater than that at the first construction stage, neither during construction, nor in the final state, nor due to any load combination.

2.2.3.3 Anchorage Recess

Clearance is required for handling of the prestressing jack and for stressing. The dimensions of the anchorage recess are adapted to the prestressing jack used. The ETA holder saves for reference information on the minimum dimensions of the anchorage recesses and appropriate clearance behind the anchorage.

The anchorage recess is designed with such dimensions as to ensure the required concrete cover and at least 20 mm at the protection cap in steel in the final state.

In case of exposed anchorages concrete cover on anchorage and bearing trumplate is not required. However, the exposed surface of bearing trumplate and steel cap is provided with corrosion protection.

2.2.3.4 Maximum prestressing forces

Prestressing and overstressing forces are specified in the respective standards and regulations in force at the place of use. Annex 15 lists the maximum possible prestressing and overstressing forces according to Eurocode 2.

2.2.3.5 Centre spacing, edge distance, and reinforcement in the anchorage zone

Centre spacing, edge distance, helix, and additional reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 are adopted, see Clause 1.8.

Verification of transfer of prestressing forces to structural concrete is not required if centre spacing and edge distance of anchorages and couplers as well as grade and dimensions of additional reinforcement, see Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24, are conformed to. In the case of grouped anchorages, the additional reinforcement of the individual anchorages can be combined, provided appropriate anchorage is ensured. However, number, cross-sectional area and position with respect to the bearing trumplates remain unchanged.

The reinforcement of the structure is not employed as additional reinforcement. Reinforcement exceeding the required reinforcement of the structure may be used as additional reinforcement, provided appropriate placing is possible.

The forces outside the area of the additional reinforcement are verified and, if necessary, dealt with by appropriate reinforcement.

If required for a specific project design, the reinforcement given in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 may be modified in accordance with the respective regulations in force at the place of use as well as with the relevant approval of the local authority and of the ETA holder to provide equivalent performance.

Page 19 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

2.2.3.6 Tendons in masonry structures – load transfer to the structure

Post-tensioning kits are primarily used in structures made of concrete. They can, however, be used with other structural materials, e.g. in masonry structures. However, there is no particular assessment in EAD 160004-00-0301 for these applications. Hence, load transfer of stressing force from the anchorage to masonry structures is via concrete or steel members, designed according to the European Technical Assessment, especially according to the Clauses 1.8, 1.10, 1.12.7, and 2.2.3.5, or according to Eurocode 3, respectively.

The concrete or steel members have dimensions as to permit a force of $1.1 \cdot F_{pk}$ being transferred into the masonry. The verification is according to Eurocode 6 as well as to the respective standards and regulations in force at the place of use.

2.2.4 Installation

2.2.4.1 General

It is assumed that the product will be installed according to the manufacturer's instructions or – in absence of such instructions – according to the usual practice of the building professionals.

Assembly and installation of tendons is only carried out by qualified PT specialist companies with the required resources and experience in the use of multi strand internal post-tensioning systems, see CWA 14646. The respective standards and regulations in force at the place of use are considered. The company's PT site manager has a certificate, stating that she or he has been trained by the ETA holder and that she or he possesses the necessary qualifications and experience with the "BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands".

The sequence of work steps for installation of anchorage, fixed and moveable coupler is described in Annex 26 and Annex 27.

The tendons may be manufactured on site or in the factory, i.e. prefabricated tendons. The tendons are carefully handled during production, transport, storage, and installation. To avoid confusion on each site, only prestressing steel strands with one nominal diameter are used.

Bearing trumplate, anchor head, and coupler anchor head are placed perpendicular to the tendon's axis, see Annex 16. Couplers are situated in a straight tendon section. At the anchorages and couplers, the tendon layout provides a straight section over a length of at least 250 mm beyond the end of the trumpet. In case of tendons with a minimum or reduced radius of curvature after the trumpet, the following minimum straight lengths after the end of trumpet are recommended.

- Degree of filling $0.35 \le f \le 0.50$, minimum straight length = 5 · d_i ≥ 250 mm
- Degree of filling 0.25 ≤ f ≤ 0.30, minimum straight length = 8 · d_i ≥ 400 mm

Where

Before placing the concrete, a final check of the installed tendon or duct is carried out.

In case of the single plane coupler K, the prestressing steel strands are provided with markers to be able to check the depth of engagement.

In case of a moveable coupler it is ensured by means of the corresponding position and length of the coupler sheath, that in the area of the coupler sheath and corresponding trumpet area a displacement of the moveable coupler of at least $1.15 \cdot \Delta l + 30$ mm is possible without any hindrance, where Δl is the maximum expected displacement of the coupler at stressing.

Page 20 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

2.2.4.2 Stressing operation

With a mean concrete compressive strength in the anchorage zone according to the values laid down in Annex 17, Annex 18, Annex 19, Annex 20, Annex 21, Annex 22, Annex 23, and Annex 24 full prestressing may be applied.

Stressing and, if applicable, wedging is carried out using a suitable prestressing jack. The wedging force corresponds to approximately 25 kN per wedge.

Elongation and prestressing forces are continuously checked during the stressing operation. The results of the stressing operation are recorded and the measured elongations compared with the prior calculated values.

After releasing the prestressing force from the prestressing jack, the tendon is pulled in and reduces the elongation by the amount of slip at the anchor head of the stressing anchorage.

Information on the prestressing equipment has been submitted to Österreichisches Institut für Bautechnik. The ETA holder keeps available information on prestressing jacks and appropriate clearance behind the anchorage.

The safety-at-work and health protection regulations shall be complied with.

2.2.4.3 Restressing

Restressing of tendons in combination with release and reuse of wedges is permitted, whereas the wedges bite into a least 15 mm of virgin strand surface and no wedge bite remains inside the final length of the tendon between anchorages.

Tendons with 7-wire prestressing steel strands that remain restressable throughout the working life of the structure. Grease, wax, or an equivalent soft material is used as filling material or circulating dry air is used as corrosion protection. Moreover, a strand protrusion at the stressing anchor remains with a length compatible with the prestressing jack used.

2.2.4.4 Exchanging tendons

Exchange of unbonded tendons is permitted, subject of acceptance at the pace of use. The specifications for exchangeable tendons are defined during the design phase.

For exchangeable tendons, wax or grease is used as filling material or circulating dry air is used as corrosion protection. Moreover, a strand protrusion remains at the stressing anchor with a length allowing safe release of the complete prestressing force.

Stressing and fixed anchorages are accessible and adequate space is provided behind the anchorages.

2.2.4.5 Filling operations

2.2.4.5.1 Grouting

Grout is injected through the inlet holes until it escapes from the outlet tubes with the same consistency. To avoid voids in the hardened grout special measures are applied for long tendons, tendon paths with distinct high points, or inclined tendons. All vents, grouting inlets, and protection caps are sealed immediately after grouting. In case of couplers K, the second stage holes, wedges and springs are checked for cleanness before and immediately after grouting the first construction stage.

The standards observed for cement grouting in prestressing ducts are EN 445, EN 446, and EN 447 or the standards and regulations in force at the place of use are applied for ready mixed grout.

2.2.4.5.2 Filling with grease, wax, and an equivalent soft material

The recommendations of the supplier are relevant for the filling material applied. The filling process with grease, wax, and an equivalent soft material follows a similar procedure as the one specified for grouting. However, a different filling procedure might be possible if permitted at the place of use.

Page 21 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

2.2.4.5.3 Circulating dry air

Actively circulating dry air allows for corrosion protection of tendons, provided a permanent monitoring of the drying and circulation system is in place. This is in general only applicable to structures of particular importance. The respective standards and regulations in force at the place of use are observed.

2.2.4.5.4 Filling records

The results of the grouting and filling operation are recorded in detail in filling records.

2.2.4.6 Welding

Ducts may be welded.

The helix may be welded to the bearing trumplate to secure its position.

After installation of the prestressing steel strands further welding operations may not be carried out on the tendons. In case of welding operations near tendons, precautionary measures are required to avoid damage to the corrosion protection system. However, plastic components may be welded even after installation of the tendons.

2.3 Assumed working life

The European Technical Assessment is based on an assumed working life of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands of 100 years, provided that the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is subject to appropriate installation, use, and maintenance, see Clause 2.2. These provisions are based upon the current state of the art and the available knowledge and experience.

In normal use conditions, the real working life may be considerably longer without major degradation affecting the basic requirements for construction works⁴.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee, neither given by the product manufacturer or his representative nor by EOTA nor by the Technical Assessment Body, but are regarded only as a means for expressing the expected economically reasonable working life of the product.

3 Performance of the product and references to the methods used for its assessment

3.1 Essential characteristics

The performances of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands for the essential characteristics are given in Table 9 and Table 10. In Annex 31 the combinations of essential characteristics and corresponding intended uses are listed.

Table 9 Essential characteristics and performances of the product

Nº	Essential characteristic	Product performance
Intend Th	BR VT CONA CMI BT – Internal Post-tensionii ded use	ng System with 02 to 61 Strands estressing of structures, Clause 2.1, Table 8, lines
	Basic requirement for construction work	s 1: Mechanical resistance and stability
1	Resistance to static load	See Clause 3.2.1.1.

The real working life of a product incorporated in a specific works depends on the environmental conditions to which that works are subject, as well as on the particular conditions of design, execution, use, and maintenance of that works. Therefore, it cannot be excluded that in certain cases the real working life of the product may also be shorter than the assumed working life.

Nº	Essential characteristic	Product performance
2	Resistance to fatigue	See Clause 3.2.1.2.
3	Load transfer to the structure	See Clause 3.2.1.3.
4	Friction coefficient	See Clause 3.2.1.4.
5	Deviation, deflection (limits) for internal bonded and internal unbonded tendon	See Clause 3.2.1.5.
6	Assessment of assembly	See Clause 3.2.1.6.
7	Corrosion protection	See Clause 3.2.1.7.
	Basic requirement for construction	on works 2: Safety in case of fire
8	Reaction to fire	See Clause 3.2.2.1.
	Basic requirement for construction works	3: Hygiene, health and the environment
9	Content, emission and/or release of dangerous substances	See Clause 3.2.3.1.
	Basic requirement for construction wo	orks 4: Safety and accessibility in use
	Not relevant. No characteristic assessed.	_
	Basic requirement for construction	works 5: Protection against noise
	Not relevant. No characteristic assessed.	_
	Basic requirement for construction work	s 6: Energy economy and heat retention
	Not relevant. No characteristic assessed.	_
	Basic requirement for construction works	s 7: Sustainable use of natural resources
	No characteristic assessed.	_

Table 10 Essential characteristics and performances of the product in addition to Table 9 for an optional use category

Nº	Additional essential characteristic	Product performance											
Produ BE	uct BR VT CONA CMI BT – Internal Post-tensionir	ng System with 02 to 61 Strands											
	nal use category	.9 - ,											
Nº	The PT system is intended to be used for the prestressing of structures, Clause 2.1, Table 8, line № 3, Internal tendon for cryogenic applications with anchorage outside the possible cryogenic zone												
	Basic requirement for construction work	s 1: Mechanical resistance and stability											
10	Resistance to static load under cryogenic conditions for applications with anchorage/coupling outside the possible cryogenic zone	See Clause 3.2.4.1.											

Page 23 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

3.2 Product performance

3.2.1 Mechanical resistance and stability

3.2.1.1 Resistance to static load

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.1. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.2 Resistance to fatigue

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.2. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.3 Load transfer to the structure

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.3. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according Annex 28 are listed in Annex 7 and Annex 8.

3.2.1.4 Friction coefficient

For friction losses including friction coefficient see Clause 1.5.

3.2.1.5 Deviation, deflection (limits) for internal bonded and internal unbonded tendon

For minimum radii of curvature see Clause 1.9.

3.2.1.6 Assessment of assembly

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.7.

3.2.1.7 Corrosion protection

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.13.

3.2.2 Safety in case of fire

3.2.2.1 Reaction to fire

The performance of components made of steel or cast iron is Class A1 without testing.

The performance of components of other materials has not been assessed.

3.2.3 Hygiene, health and the environment

3.2.3.1 Content, emission and/or release of dangerous substances

According to the manufacturer's declaration, the PT system does not contain dangerous substances.

SVOC and VOC

The performance of components made of steel or cast iron that are free of coating with organic material is no emission of SVOC and VOC.

The performance of components of other materials has not been assessed.

Leachable substances

The product is not intended to be in direct contact to soil, ground water, and surface water.

Page 24 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

3.2.4 Mechanical resistance and stability

3.2.4.1 Resistance to static load under cryogenic conditions for applications with anchorage/coupling outside the possible cryogenic zone

The PT system as described in the ETA meets the acceptance criteria of EAD 160004-00-0301, Clause 2.2.8. The characteristic values of maximum force, F_{pk} , of the tendon for prestressing steel strands according to Annex 28 are listed in Annex 7 and Annex 8.

3.3 Assessment methods

The assessment of the essential characteristics in Clause 3.1 of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands for the intended uses and in relation to the requirements for mechanical resistance and stability, safety in case of fire, and for hygiene, health and the environment in the sense of the basic requirements for construction works № 1, 2, and 3 of Regulation (EU) № 305/2011 has been made in accordance with Annex A of EAD 160004-00-0301, Post-tensioning kits for prestressing of structures, for

- Item 1, Internal bonded tendon
- Item 2, Internal unbonded tendon
- Item 8, Optional Use Category. Internal tendon Cryogenic applications with anchorage/coupling outside the possible cryogenic zone

3.4 Identification

The European Technical Assessment for the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is issued on the basis of agreed data⁵ that identify the assessed product. Changes to materials, to composition, or to characteristics of the product, or to the production process could result in these deposited data being incorrect. Österreichisches Institut für Bautechnik should be notified before the changes are introduced, as an amendment of the European Technical Assessment is possibly necessary.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

4.1 System of assessment and verification of constancy of performance

According to Commission Decision 98/456/EC the system of assessment and verification of constancy of performance to be applied to the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands is System 1+. System 1+ is detailed in Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, Annex, point 1.1., and provides for the following items.

- (a) The manufacturer shall carry out
 - (i) factory production control;
 - (ii) further testing of samples taken at the manufacturing plant by the manufacturer in accordance with the prescribed test plan⁶.

⁵ The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik.

⁶ The prescribed test plan has been deposited with Österreichisches Institut für Bautechnik and is handed over only to the notified product certification body involved in the procedure for the assessment and verification of constancy of performance. The prescribed test plan is also referred to as control plan.

Page 25 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

- (b) The notified product certification body shall decide on the issuing, restriction, suspension, or withdrawal of the certificate of constancy of performance of the construction product on the basis of the outcome of the following assessments and verifications carried out by that body
 - (i) an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values, or descriptive documentation of the product;
 - (ii) initial inspection of the manufacturing plant and of factory production control;
 - (iii) continuing surveillance, assessment, and evaluation of factory production control;
 - (iv) audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities.

4.2 AVCP for construction products for which a European Technical Assessment has been issued

Notified bodies undertaking tasks under System 1+ shall consider the European Technical Assessment issued for the construction product in question as the assessment of the performance of that product. Notified bodies shall therefore not undertake the tasks referred to in Clause 4.1, point (b) (i).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

5.1 Tasks for the manufacturer

5.1.1 Factory production control

The kit manufacturer exercises permanent internal control of the production. All the elements, procedures, and specifications adopted by the kit manufacturer are documented in a systematic manner in the form of written policies and procedures.

Control of the incoming materials

The manufacturer checks the incoming materials to establish conformity with their specifications.

Inspection and testing

Kind and frequency of inspections, tests, and checks, conducted during production and on the final product normally include.

- Definition of the number of samples taken by the kit manufacturer
- Material properties e.g. tensile strength, hardness, surface finish, chemical composition, etc.
- Determination of the dimensions of components
- Check correct assembly
- Documentation of tests and test results

All tests are performed according to written procedures with suitable calibrated measuring devices. All results of inspections, tests, and checks are recorded in a consistent and systematic way. The basic elements of the prescribed test plan are given in Annex 29, conform to EAD 160004-00-0301, Table 3, and are specified in the quality management plan of the BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands.

The results of inspections, tests, and checks are evaluated for conformity. Shortcomings request the manufacturer to immediately implement measures to eliminate the defects.

Page 26 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Control of non-conforming products

Products, which are considered as not conforming to the prescribed test plan, are immediately marked and separated from such products that do conform. Factory production control addresses control of non-conforming products.

Factory production control includes procedures to keep records of all complaints about the PT system.

The records are presented to the notified product certification body involved in continuous surveillance and are kept at least for ten years after the product has been placed on the market. On request, the records are presented to Österreichisches Institut für Bautechnik.

At least once a year the manufacturer audits the manufacturers of the components given in Annex 30.

5.1.2 Declaration of performance

The manufacturer is responsible for preparing the declaration of performance. When all the criteria of the assessment and verification of constancy of performance are met, including the certificate of constancy of performance issued by the notified product certification body, the manufacturer draws up the declaration of performance. Essential characteristics to be included in the declaration of performance for the corresponding intended use are given in Table 9 and Table 10. In Annex 31 the combinations of essential characteristics and corresponding intended uses are listed.

Tasks for the notified product certification body

5.2.1 Initial inspection of the manufacturing plant and of factory production control

> The notified product certification body establishes that, in accordance with the prescribed test plan, the manufacturing plant, in particular personnel and equipment, and the factory production control are suitable to ensure a continuous manufacturing of the PT system according to the given technical specifications. For the most important activities, EAD 160004-00-0301, Table 4 summarises the minimum procedure.

5.2.2 Continuing surveillance, assessment, and evaluation of factory production control

The activities are conducted by the notified product certification body and include surveillance inspections. The kit manufacturer is inspected at least once a year. Factory production control is inspected and samples are taken for independent single tensile element tests.

For the most important activities, the control plan according to EAD 160004-00-0301, Table 4 summarises the minimum procedure. It is verified that the system of factory production control and the specified manufacturing process are maintained, taking account of the control plan.

Each manufacturer of the components given in Annex 30 is audited at least once in five years. It is verified that the system of factory production control and the specified manufacturing process are maintained, taking account of the prescribed test plan.

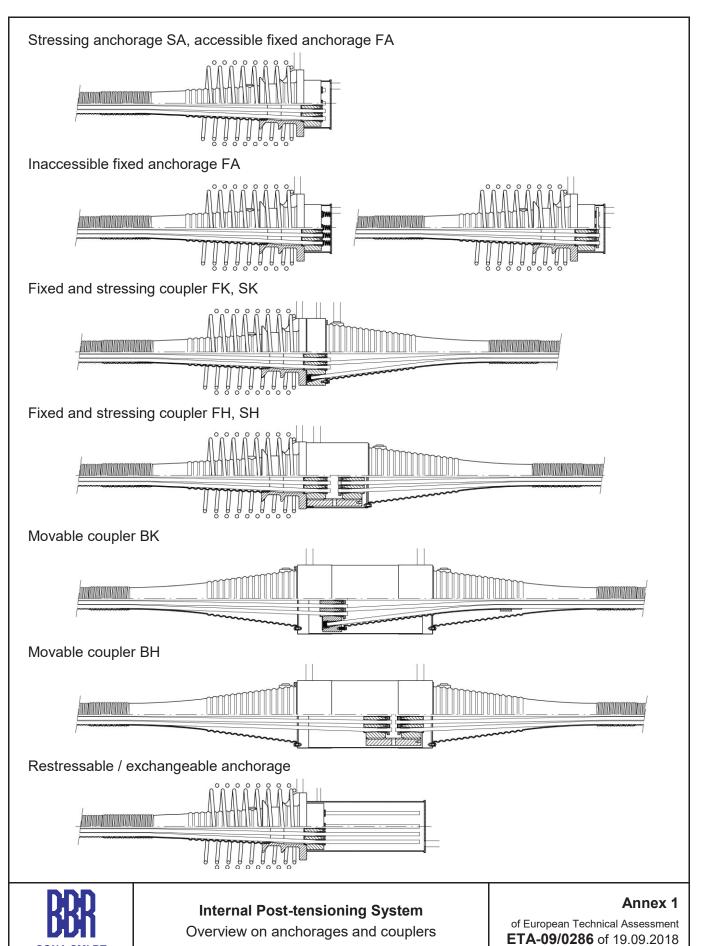
The results of continuous surveillance are made available on demand by the notified product certification body to Österreichisches Institut für Bautechnik. When the provisions of the European Technical Assessment and the prescribed test plan are no longer fulfilled, the certificate of constancy of performance is withdrawn by the notified product certification body

5.2.3 Audit-testing of samples taken by the notified product certification body at the manufacturing plant or at the manufacturer's storage facilities

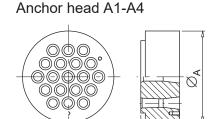
During surveillance inspection, the notified product certification body takes samples of components of the PT system for independent testing. Audit-testing is conducted at least once a year by the notified product certification body. For the most important components, Annex 30 summarises the minimum procedures. Annex 30 conforms to EAD 160004-00-0301, Table 4. In particular, at least once a year, the notified product certification body also carries out one single

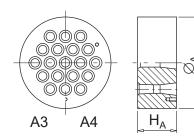
Page 27 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

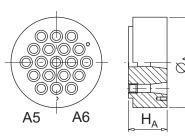
tensile element test series according to EAD 160004-00-0301, Annex C.7 and Clause 3.3.4 on specimens taken from the manufacturing plant or at the manufacturer's storage facility.

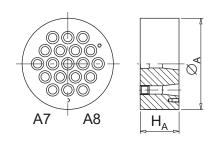

> Issued in Vienna on 19 September 2018 by Österreichisches Institut für Bautechnik

> > The original document is signed by


Rainer Mikulits **Managing Director**


CONA CMI BT

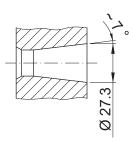


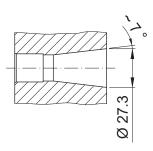

Anchor head A5-A8

A1

A2

 H_A

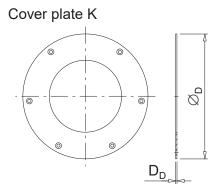


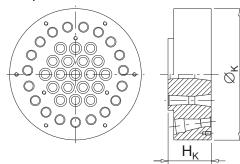

Ring cushion Anchor head A5-A8

Cone A5–A8

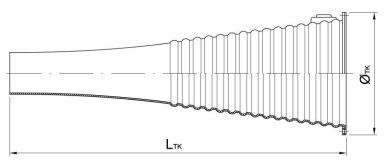
Dimensions in mm

Number of strands		02	03	04	05	06	07	80	09	12	13	15	16
Anchor head													
Nominal diameter Ø _A m	nm	90	100	100	130	130	130	150	160	160	180	200	200
	nm	50	50	50	50	55	55	60	60	65	72	75	80
Height head A5-A8	nm	65	65	65	65	65	65	65	65	70	72	75	80


Number of strands		19	22	24	25	27	31	37	42	43	48	55	61
Anchor head													
Nominal diameter Ø _A	mm	200	225	240	255	255	255	285	300	320	325	335	365
	mm	85	95	100	100	105	110	_	_	_	_	_	_
Height head A5-A8	mm	85	95	100	100	105	110	120	130	130	140	150	155


Internal Post-tensioning System Anchor heads

Annex 2



Coupler head K

Trumpet K

Number of strands

02

03

			-								
Coupler head K											
Diameter	\emptyset_{K}	mm	195	195	195	210	210	210	250	250	250
Height	H_{K}	mm	85	85	85	85	85	85	90	90	90
Cover plate											
Diameter	\varnothing_{D}	mm	192	192	192	207	207	207	246	246	246
Thickness	D_D	mm	3	3	3	3	3	3	3	3	3
Trumpet K											
Diameter	Øtk	mm	185	185	185	203	203	203	240	240	240
Length	L_{TK}	mm	470	470	470	640	640	640	845	845	730
Number of stran	ıds		13	15	16	19	22	24	25	27	31
Coupler head K											
Diameter	\emptyset_{K}	mm	290	290	290	290	310	340	390	390	390
Height	H_{K}	mm	90	90	95	95	105	120	125	125	130
Cover plate											
Diameter	\varnothing_{D}	mm	286	286	286	286	306	336	386	386	386
Diameter Thickness	\varnothing_{D}	mm mm	286 3	286	286 3	286 3	306 5	336 5	386 5	386 5	386 5
Thickness											

04

05

06

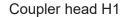
07

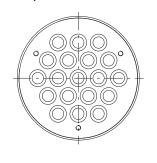
80

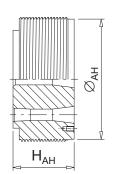
09

12

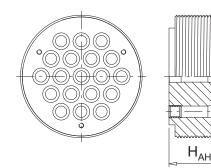
Internal Post-tensioning System

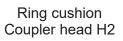

Coupler K and trumpet K


Annex 3

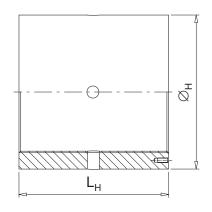

electronic copy

Page 31 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018





Coupler head H2

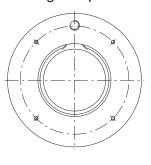


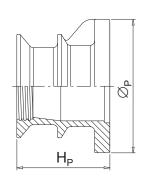
Coupler sleeve H

Dimensions in mm

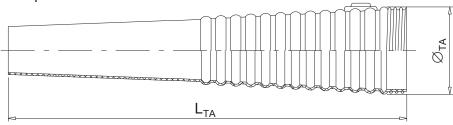
Number of strands			02	03	04	05	06	07	80	09	12	13	15	16
Coupler anchor heads H1 and H2														
Nominal diameter Ø	Эан	mm	90	95	100	130	130	130	150	160	160	180	200	200
Height head H1		mm	50	50	55	55	60	65	65	70	80	80	80	85
Height head H2	I AH	mm	65	65	65	65	65	65	65	70	80	80	80	85
Coupler sleeve H														
Minimum diameter	Øн	mm	114	124	133	163	167	170	192	203	213	233	259	259
Length sleeve	L _H	mm	180	180	180	180	190	200	200	210	230	230	240	250

Number of strands	19	22	24	25	27	31	37	42	43	48	55	61
Coupler anchor heads H1 and H2												
Nominal diameter Ø _{AH} m	m 200	225	240	255	255	255	285	300	320	325	335	365
Height head H1 HAH	m 95	100	100	100	105	115			_			
Height head H2	m 95	100	100	100	105	115	125	135	135	145	160	160
Coupler sleeve H												
Minimum diameter ∅ _H m	m 269	296	312	327	330	338	373	395	413	425	443	475
Length sleeve L _H m	m 270	270	280	280	300	320	340	360	360	380	410	410




Internal Post-tensioning System Coupler H

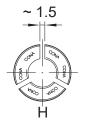
Annex 4

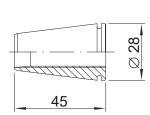


Bearing trumplate

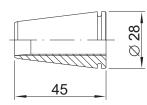
Trumpet A

Number of strand	ds		02	03	04	05	06	07	08	09	12	13	15	16
Bearing trumplate														
Diameter	\varnothing_{P}	mm	130	130	130	170	170	170	195	225	225	240	280	280
Height	H_{P}	mm	120	120	120	128	128	128	133	150	150	160	195	195
Trumpet A														
Diameter	\emptyset_{TA}	mm	72	72	72	88	88	88	127	127	127	153	153	153
Length	L_TA	mm	200	200	200	328	328	328	623	623	508	694	694	694
Number of strands			19	22	24	25	27	31	37	42	43	48	55	61
Bearing trumplate														
Diameter	\varnothing_{P}	mm	280	310	325	360	360	360	400	425	485	485	485	520
Height	H_{P}	mm	195	206	227	250	250	250	275	290	340	340	340	350
Trumpet A														
Diameter	\emptyset_{TA}	mm	153	170	191	191	191	191	219	229	254	254	254	278
Length	L_TA	mm	579	715	866	866	866	751	1 060	1 060	1 244	1 244	1 244	1 290

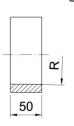


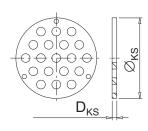

Internal Post-tensioning SystemBearing trumplate and trumpet A

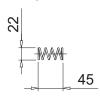

Annex 5

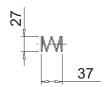


Wedges






Tension ring


Wedge retaining plate KS

Spring A

Spring K

Dimensions in mm

Number of strands	S		02	03	04	05	06	07	08	09	12	13	15	16
Wedge retaining plate KS														
Diameter	Øks	mm	65	73	91	117	117	117	130	157	157	145	185	185
Thickness	D _{KS}	mm	5	5	5	5	5	5	8	8	8	10	10	10
Number of strands			19	22	19	22	24	25	27	31	37	42	43	48
Wedge retaining plate KS														
Diameter	Øks	mm	185	205	232	234	234	234	240	275	275	275	310	310

10

10

10

12

12

12

12

12

12

Thickness

D_{KS} | mm

10

10

Internal Post-tensioning System

10

Wedges and accessories

Annex 6

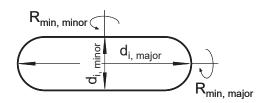
CONA CMI BT n06-140

Number of	Nominal cross-sectional	Nominal mass of	Characteristic value of maximum force of tendon				
strands	area of prestressing steel	prestressing steel	f _{pk} = 1770 MPa	f _{pk} = 1 860 MPa			
n	Ap	М	F _{pk}	F _{pk}			
_	mm²	kg/m	kN	kN			
02	280	2.2	496	520			
03	420	3.3	744	780			
04	560	4.4	992	1 040			
05	700	5.5	1 240	1 300			
06	840	6.6	1 488	1 560			
07	980	7.7	1 736	1 820			
08	1 120	8.7	1 984	2 080			
09	1 260	9.8	2 232	2 340			
12	1 680	13.1	2 976	3 120			
13	1 820	14.2	3 224	3 380			
15	2 100	16.4	3 720	3 900			
16	2 240	17.5	3 968	4 160			
19	2 660	20.8	4712	4 940			
22	3 080	24.0	5 456	5 720			
24	3 360	26.2	5 952	6 240			
25	3 500	27.3	6 200	6 500			
27	3 780	29.5	6 696	7 020			
31	4 340	33.9	7 688	8 060			
37	5 180	40.4	9 176	9 620			
42	5 880	45.9	10 416	10 920			
43	6 020	47.0	10 664	11 180			
48	6 720	52.5	11 904	12 480			
55	7 700	60.1	13 640	14 300			
61	8 540	66.7	15 128	15 860			

Internal Post-tensioning System
Tendon ranges for CONA CMI BT n06-140

Annex 7

CONA CMI BT n06-150


Number of strands	Nominal cross-sectional	Nominal mass of prestressing steel		stic value of rce of tendon		
Stratius	area of prestressing steel	prestressing steer	f _{pk} = 1770 MPa	f _{pk} = 1860 MPa		
n	Ap	М	F _{pk}	F _{pk}		
_	mm²	kg/m	kN	kN		
02	300	2.3	532	558		
03	450	3.5	798	837		
04	600	4.7	1 064	1 116		
05	750	5.9	1 330	1 395		
06	900	7.0	1 596	1 674		
07	1 050	8.2	1 862	1 953		
08	1 200	9.4	2 128	2 232		
09	1 350	10.5	2 394	2 511		
12	1 800	14.1	3 192	3 348		
13	1 950	15.2	3 458	3 627		
15	2 250	17.6	3 990	4 185		
16	2 400	18.8	4 256	4 464		
19	2 850	22.3	5 054	5 301		
22	3 300	25.8	5 852	6 138		
24	3 600	28.1	6 384	6 696		
25	3 750	29.3	6 650	6 975		
27	4 050	31.6	7 182	7 533		
31	4 650	36.3	8 246	8 649		
37	5 550	43.4	9 842	10 323		
42	6 300	49.2	11 172	11 718		
43	6 450	50.4	11 438	11 997		
48	7 200	56.3	12 768	13 392		
55	8 250	64.5	14 630	15 345		
61	9 150	71.5	16 226	17 019		

Internal Post-tensioning System
Tendon ranges for CONA CMI BT n06-150

Annex 8

Inner dimensions, d_i , of flat duct and minimum radius of curvature, R_{min} , for $p_{R, max}$ = 200 kN/m

Number of strands	Inner din	nensions	Radius of curvature					
n	d _{i, major}	d _{i, minor}	$R_{\text{min, major}}$	R _{min, minor}				
_	mm	mm	m	m				
02	40	20	2.0	2.1				
03	55	20	2.0	3.1				
04	70	20	2.0	4.2				
05	85	20	2.0	5.2				

Inner dimensions, d_i, of flat duct and minimum radius of curvature, R_{min} , for $p_{R,\,max}$ = 140 kN/m

Number of strands	Inner din	nensions	Radius of curvature				
n	d _{i, major}	d _{i, minor}	$R_{\text{min, major}}$	R _{min, minor}			
_	mm	mm	m	m			
02	40	20	2.0	3.0			
03	55	20	2.0	4.5			
04	70	20	2.0	6.0			
05	85	20	2.0 7.5				

Internal Post-tensioning SystemMinimum radius of curvature of flat duct

Annex 9

Inner	diameter	of	circular	duct,	d _i ,	and	minimum	radius	of	curvature,	R_{min} ,	for
p _{R, max}	= 200 kN/n	า										

Number of strands	f ≈ ().35	f≈	0.40	f≈	0.45	f≈ 0.50		
n	di	R _{min}	d _i	R _{min}	di	R _{min}	di	R _{min}	
_	mm	m	mm	m	mm	m	mm	m	
02	35	2.0	_	_	_	_	_	_	
03	40	2.5		_	_			_	
04	45	2.9	45	2.9		_			
05	50	3.3	50	3.3	_	_	_	_	
06	55	3.6	55	3.6	_	_	_		
07	60	3.8	60	3.8	_	_	_	_	
08	65	4.0	60	4.4	60	4.4			
09	70	4.2	65	4.5	60	4.9	60	4.9	
12	80	4.9	75	5.3	70	5.6	70	5.6	
13	85	5.0	80	5.3	75	5.7	70	6.1	
15	90	5.5	85	5.8	80	6.2	75	6.6	
16	95	5.5	85	6.2	80	6.6	80	6.6	
19	100	6.2	95	6.6	90	6.9	85	7.3	
22	110	6.6	100	7.2	95	7.6	90	8.0	
24	115	6.9	105	7.5	100	7.9	95	8.3	
25	115	7.1	110	7.5	105	7.8	100	8.2	
27	120	7.4	115	7.7	105	8.4	100	8.9	
31	130	7.8	120	8.5	115	8.8	110	9.3	
37	140	8.7	135	9.0	125	9.7	120	10.1	
42	150	9.2	140	9.8	135	10.2	125	11.0	
43	155	9.1	145	9.7	135	10.5	130	11.0	
48	160	9.8	150	10.5	145	10.9	135	11.7	
55	175	10.3	160	11.3	155	11.6	145	12.5	
61	180	11.1	170	11.8	160	12.5	155	12.9	

Internal Post-tensioning System

Minimum radius of curvature of circular duct for $p_{R, max} = 200 \text{ kN/m}$

Inner diame $p_{R, max} = 140 l$		circular o	luct, d _i ,	and mini	mum rad	lius of cu	ırvature,	R _{min} , for
Number of strands	f≈	0.35	f≈	0.40	f≈	0.45	f≈	0.50
n	di	R _{min}	di	R _{min}	di	R _{min}	di	R _{min}
_	mm	m	mm	m	mm	m	mm	m
02	35	2.7	_		_	_	_	
03	40	3.5	_		_	_	_	_
04	45	4.2	45	4.2	_	_	_	_
05	50	4.7	50	4.7	_	_	_	_
06	55	5.1	55	5.1	_	_	_	_
07	60	5.5	60	5.5	_	_	_	_
08	65	5.8	60	6.3	60	6.3		_
09	70	6.0	65	6.5	60	7.0	60	7.0
12	80	7.0	75	7.5	70	8.0	70	8.0
13	85	7.2	80	7.6	75	8.1	70	8.7
15	90	7.8	85	8.3	80	8.8	75	9.4
16	95	7.9	85	8.8	80	9.4	80	9.4
19	100	8.9	95	9.4	90	9.9	85	10.5
22	110	9.4	100	10.3	95	10.9	90	11.5
24	115	9.8	105	10.7	100	11.3	95	11.8
25	115	10.2	110	10.7	105	11.2	100	11.7
27	120	10.6	115	11.0	105	12.1	100	12.7
31	130	11.2	120	12.1	115	12.6	110	13.2
37	140	12.4	135	12.9	125	13.9	120	14.5
42	150	13.1	140	14.1	135	14.6	125	15.8
43	155	13.0	145	13.9	135	14.9	130	15.5
48	160	14.1	150	15.0	145	15.5	135	16.7
55	175	14.7	160	16.1	155	16.6	145	17.8
61	180	15.9	170	16.8	160	17.9	155	18.5

Internal Post-tensioning System

Minimum radius of curvature of circular duct for $p_{R, max} = 140 \text{ kN/m}$

Annex 11 of European Technical Assessment ETA-09/0286 of 19.09.2018

Member of EOTA

Minimum centre spacing	g of tendon ar	chorages				
Tendon			Minimum	centre spac	ing a _c = b _c	
f _{cm, 0, cube, 150}	MPa	23	28	34	38	43
f _{cm, 0, cylinder, ∅ 150}	MPa	19	23	28	31	35
CONA CMI BT 0206	mm	210	210	210	210	205
CONA CMI BT 0306	mm	210	210	210	210	205
CONA CMI BT 0406	mm	235	215	210	210	205
CONA CMI BT 0506	mm	265	250	250	250	250
CONA CMI BT 0606	mm	290	265	250	250	250
CONA CMI BT 0706	mm	310	285	260	255	255
CONA CMI BT 0806	mm	330	305	280	275	275
CONA CMI BT 0906	mm	350	320	310	310	310
CONA CMI BT 1206	mm	405	370	340	325	310
CONA CMI BT 1306	mm	425	390	355	340	325
CONA CMI BT 1506	mm	455	415	380	365	365
CONA CMI BT 1606	mm	470	430	390	375	365
CONA CMI BT 1906	mm	510	465	425	410	390
CONA CMI BT 2206	mm	550	500	460	440	420
CONA CMI BT 2406	mm	575	525	480	460	435
CONA CMI BT 2506	mm	590	535	485	465	450
CONA CMI BT 2706	mm	610	555	505	485	460
CONA CMI BT 3106	mm	650	595	545	520	495
CONA CMI BT 3706	mm	_	680	680	680	680
CONA CMI BT 4206	mm	_	735	735	735	735
CONA CMI BT 4306	mm	_	755	755	755	755
CONA CMI BT 4806	mm	_	805	805	805	805
CONA CMI BT 5506	mm	_	875	875	875	875
CONA CMI BT 6106	mm	_	940	940	940	940

Internal Post-tensioning System Minimum centre spacing

Annex 12

Tendon			Minimum	centre spac	ing a _c = b _c	
f _{cm, 0, cube, 150}	MPa	23	28	34	38	43
$f_{cm,\;0,\;cylinder,\;arnothing}$ 150	MPa	19	23	28	31	35
CONA CMI BT 0206	mm	95 + c	95 + c	95 + c	95 + c	95 + c
CONA CMI BT 0306	mm	95 + c	95 + c	95 + c	95 + c	95 + c
CONA CMI BT 0406	mm	110 + c	100 + c	95 + c	95 + c	95 + c
CONA CMI BT 0506	mm	125 + c	115 + c	115 + c	115 + c	115 + c
CONA CMI BT 0606	mm	135 + c	125 + c	115 + c	115 + c	115 + c
CONA CMI BT 0706	mm	145 + c	135 + c	120 + c	120 + c	120 + c
CONA CMI BT 0806	mm	155 + c	145 + c	130 + c	130 + c	130 + c
CONA CMI BT 0906	mm	165 + c	150 + c	145 + c	145 + c	145 + c
CONA CMI BT 1206	mm	195 + c	175 + c	160 + c	155 + c	145 + c
CONA CMI BT 1306	mm	205 + c	185 + c	170 + c	160 + c	155 + c
CONA CMI BT 1506	mm	220 + c	200 + c	180 + c	175 + c	175 + c
CONA CMI BT 1606	mm	225 + c	205 + c	185 + c	180 + c	175 + c
CONA CMI BT 1906	mm	245 + c	225 + c	205 + c	195 + c	185 + c
CONA CMI BT 2206	mm	265 + c	240 + c	220 + c	210 + c	200 + c
CONA CMI BT 2406	mm	280 + c	255 + c	230 + c	220 + c	210 + c
CONA CMI BT 2506	mm	285 + c	260 + c	235 + c	225 + c	215 + c
CONA CMI BT 2706	mm	295 + c	270 + c	245 + c	235 + c	220 + c
CONA CMI BT 3106	mm	315 + c	290 + c	265 + c	250 + c	240 + c
CONA CMI BT 3706	mm	_	330 + c	330 + c	330 + c	330 + c
CONA CMI BT 4206	mm	_	360 + c	360 + c	360 + c	360 + c
CONA CMI BT 4306	mm	_	370 + c	370 + c	370 + c	370 + c
CONA CMI BT 4806	mm	_	395 + c	395 + c	395 + c	395 + c
CONA CMI BT 5506	mm	_	430 + c	430 + c	430 + c	430 + c
CONA CMI BT 6106	mm	_	460 + c	460 + c	460 + c	460 + c

c..... Concrete cover in mm

Internal Post-tensioning System Minimum edge distance

Annex 13

Material specifications

Component	Standard / Specification
Anchor head A CONA CMI BT 0206 to 6106	EN 10083-1 EN 10083-2
Coupler anchor head K CONA CMI BT 0206 to 3106	EN 10083-1 EN 10083-2
Coupler anchor head H CONA CMI BT 0206 to 6106	EN 10083-1 EN 10083-2
Bearing trumplate CONA CMI BT 0206 to 6106	EN 1561 EN 1563
Coupler sleeve H CONA CMI BT 0206 to 6106	EN 10210-1
Wedge retaining plate, cover plate KS CONA CMI BT 0206 to 6106	EN 10025-2
Trumpet A and K	EN ISO 17855-1
Ring cushion	EN ISO 17855-1 EN ISO 19069-1
Tension ring B	EN 10210-1
Ring wedge H and F	EN 10277-2 EN 10084
Spring A and K	EN 10270-1
Helix	Ribbed reinforcing steel $R_e \ge 500 \text{ MPa}$
Additional reinforcement, stirrups	Ribbed reinforcing steel $R_e \ge 500 \text{ MPa}$
Sheaths	EN 523

Internal Post-tensioning System Material specifications

Annex 14

Maximum prestressing and overstressing forces Maximum overstressing force 1), 2) Maximum prestressing force 1) $0.9 \cdot F_{p0.1}$ $0.95 \cdot F_{p0.1}$ **CONA CMI BT** Designation n06-140 n06-150 n06-140 n06-150 Characteristic **MPa** tensile strength kΝ kΝ kN kΝ kΝ kN kN kN 1 107 2 103 2 5 2 7 2 5 5 1 3 159 3 107 3 2 6 3 3 3 3 5 n 3 1 3 9 3 2 9 8 3 5 4 2 3 481 3 5 5 7 Number 4 001 4 2 0 7 3 9 3 5 4 133 4 2 2 4 4 4 4 0 of strands 4 534 4 5 5 6 5 141 4 946 5 0 5 4 5 221 5 153 5 2 6 5 5 5 5 8 5 686

The given values are maximum values according to Eurocode 2. The actual values are taken from the standards and regulations in force at the place of use. Conformity with the stabilisation and crack width criteria in the load transfer test has been verified to a load level of 0.80 · Fpk.

7 792

8 8 4 5

9 0 5 6

10 109

11 583

8 192

9 5 2 0

12 177

13 505

5 5 9 2

8 698

8 9 0 5

Overstressing is permitted if the force in the prestressing jack is measured to an accuracy of ± 5 % of the final value of the prestressing force.

Where

F_{pk}.....Characteristic value of maximum force of tendon

7 2 5 9

8 240

8 4 3 7

10 791

F_{p0.1}...Characteristic value of 0.1% proof force of the tendon

Internal Post-tensioning System

5 565

8 862

Maximum prestressing and overstressing forces

Annex 15

of European Technical Assessment ETA-09/0286 of 19.09.2018

8 2 2 5

9 5 5 9

12 227

13 560

8 049

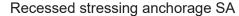
9 137

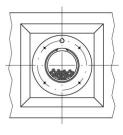
9 3 5 5

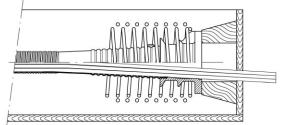
10 442

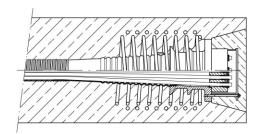
13 271

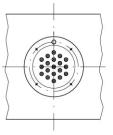
7 2 4 5

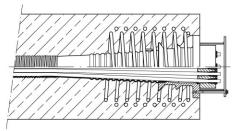

8 647

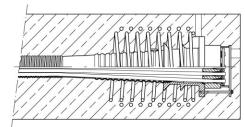

10 049


14 256

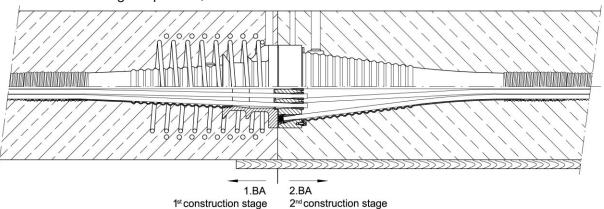

Page 43 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

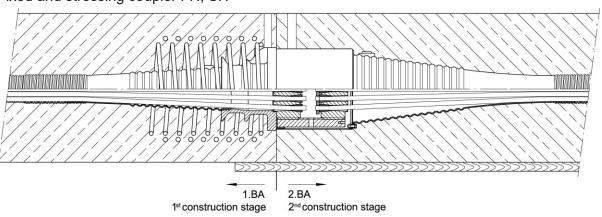






Exposed stressing anchorage SA



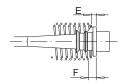

Fixed anchorage FA

Fixed and stressing coupler FK, SK

Fixed and stressing coupler FH, SH

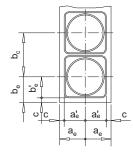
Internal Post-tensioning System

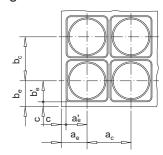
Construction stages


Annex 16

Page 44 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Stressing and fixed anchorage / coupler





 $a_e = a'_e + c$ $b_e = b'_e + c$

c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	0206	0306	0406
Strand arrangement			

7-wire prestressing steel strand – Nominal diameter **15.7 mm** … Nominal cross-sectional area **150 mm²**Maximum characteristic tensile strength **1860 MPa** ¹⁾

	Tendon												
Cross-sectional area A _p	$\mathrm{mm^2}$	300	450	600									
Char. value of maximum force F _{pk}	kN	558	837	1 116									
Char. value of 0.1% proof force F _{p0.1}	kN	492	738	984									
Max. prestressing force 0.90 · F _{p0.1}	kN	443	664	886									
Max. overstressing force $0.95 \cdot F_{p0.1}$	kN	467	701	935									

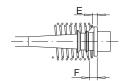
Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance

Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance																
ıbe, 150	MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
, Ø 150	MPa	19	23	28	31	35	19	23	28	31	35	19	23	28	31	35
Helix																
	mm	160	160	160	160	155	160	160	160	160	155	180	160	160	160	155
	mm	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	mm	185	185	185	185	185	185	185	185	185	185	185	185	185	185	185
	mm	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45
	_	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Е	mm	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
	mm	3	3	3	3	3	4	3	4	4	3	3	3	4	4	3
	mm	8	8	8	8	8	8	10	8	8	10	12	12	10	10	12
	mm	55	55	55	55	55	45	55	45	45	55	60	55	45	45	55
F	mm	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
$B \times B$	mm	190	190	190	190	190	190	190	190	190	190	220	200	190	190	190
stance)															
ac, bc	mm	210	210	210	210	205	210	210	210	210	205	235	215	210	210	205
a' _e , b' _e	mm	95	95	95	95	95	95	95	95	95	95	110	100	95	95	95
	E F B × B stance ac, bc	MPa	mm 160 mm 10 mm 45 E mm 15 E mm 3 mm 8 mm 55 F mm 30 B × B mm 190 stance ac, bc mm 210	mm 160 160 mm 10 10 mm 185 185 mm 45 45 E mm 15 15 E mm 3 3 mm 8 8 mm 55 55 F mm 30 30 B × B mm 190 190 stance ac, bc mm 210 210	mm 160 160 160 160 mm 10 10 10 mm 185 185 mm 45 45 45 45	mm 160 160 160 160 160 mm 10 10 10 10 mm 185 185 185 185 mm 45 45 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15	mm 160 160 160 160 155 mm 10 10 10 10 10 10 mm 185 185 185 185 185 mm 45 45 45 45 45 45 E mm 15 15 15 15 15 15 E mm 3 3 3 3 3 3 mm 8 8 8 8 8 8 mm 55 55 55 55 F mm 30 30 30 30 30 30 8 × B mm 190 190 190 190 190 190 190 190 190 190	MPa 23 28 34 38 43 23 28 34 38 43 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 24 25 25 25 25 25 25 25	MPa 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 23 28 34 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 34 34 34 34 34 34 34	MPa 23 28 34 38 43 23 28 34 34 35 19 23 28 34 35 19 23 28 34 35 35 35 35 35 35 35	MPa 23 28 34 38 43 23 28 34 38 31 35 19 23 28 31 35 19 23 28 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 31	MPa 23 28 34 38 43 23 28 34 38 43 35 35 36 37 35 36 37 35 36 37 37 37 37 37 37 37	MPa 23 28 34 38 43 23 28 34 38 43 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 35 19 23 28 31 35 35 35 35 35 35 35	MPa 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 23 28 34 35 19 23 28 31 35 19 23 28 21 21 21 21 21 21 21	MPa 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 23 28 34 38 43 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 19 23 28 34 35 35 19 23 28 34 35 35 35 35 35 35 35	MPa 23 28 34 38 43 23 28 34 38 43 23 28 34 38 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 35 19 23 28 31 31 35 19 23 28 31 35 19 23 28 31 31 35 19 23 28 31 31 35 19 23 28 31 35 19 23 28 31 31 35 19 23 28 31 35 35 31 31 31 31 31

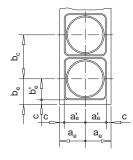
¹⁾....Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

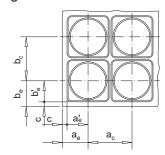
Internal Post-tensioning System

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance


Annex 17

Page 45 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	0506	0606	0706
Strand arrangement			

7-wire prestressing steel strand - Nominal diameter 15.7 mm ... Nominal cross-sectional area 150 mm² Maximum characteristic tensile strength 1860 MPa 1)

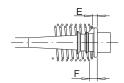
Tendon									
mm ²	750	900	1 050						
kN	1 395	1 674	1 953						
kN	1 230	1 476	1 722						
kN	1 107	1 328	1 550						
kN	1 169	1 402	1 636						
	kN kN kN	mm ² 750 kN 1395 kN 1230 kN 1107	mm² 750 900 kN 1395 1674 kN 1230 1476 kN 1107 1328						

Minimum concrete stren	gth / F	łelix /	Add	itiona	ıl rein	force	ment	/ Cei	ntre s	pacir	ng an	d edg	je dis	tance)	
Minimum concrete strength																
Cube f _{cm, 0, cube, 150}	MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
Cylinder f _{cm, 0, cylinder, ∅ 150}	MPa	19	23	28	31	35	19	23	28	31	35	19	23	28	31	35
Helix																
Outer diameter	mm	200	195	195	195	195	200	200	195	195	195	230	200	200	200	200
Bar diameter	mm	10	10	10	10	10	10	10	10	10	10	12	12	12	12	12
Length approximately	mm	230	205	205	245	230	253	230	205	245	230	254	256	231	231	231
Pitch	mm	45	50	50	60	50	45	50	50	60	50	45	50	50	50	50
Number of pitches	_	6	5	5	5	5	6	5	5	5	5	6	6	5	5	5
Distance E	mm	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Additional reinforcement																
Number of stirrups	mm	4	4	4	3	4	5	4	5	3	4	5	4	4	4	4
Bar diameter 2)	mm	12	12	12	12	12	12	12	12	12	12	14	14	12	14	14
Spacing	mm	55	50	50	65	50	50	55	45	65	50	55	60	55	55	55
Distance from anchor plate F	mm	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
Minimum outer dimensions B × B	mm	250	230	230	230	230	270	250	230	230	230	290	270	240	240	240
Centre spacing and edge distance	9															
Minimum centre spacing ac, bc	mm	265	250	250	250	250	290	265	250	250	250	310	285	260	255	255
Minimum edge distance a'e, b'e	mm	125	115	115	115	115	135	125	115	115	115	145	135	120	120	120

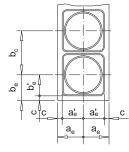
^{1)....}Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1860 MPa may also be used.

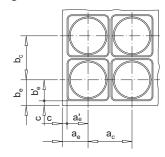
²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

Internal Post-tensioning System


Minimum concrete strength – Helix – Additional reinforcement - Centre spacing and edge distance Annex 18

Page 46 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	0806	0906	1206
Strand arrangement			

7-wire prestressing steel strand – Nominal diameter **15.7 mm** … Nominal cross-sectional area **150 mm²**Maximum characteristic tensile strength **1860 MPa** ¹⁾

	Tendon									
Cross-sectional area A _p	mm ²	1 200	1 350	1 800						
Char. value of maximum force F _{pk}	kN	2 232	2 5 1 1	3 348						
Char. value of 0.1% proof force	kN	1 968	2 214	2 952						
Max. prestressing force $0.90 \cdot F_{p0.1}$	kN	1 771	1 993	2 657						
Max. overstressing force $0.95 \cdot F_{p0.1}$	kN	1 870	2 103	2 804						

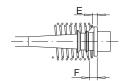
Max. overstress	sing force 0.9	5 · F _{p0.1}	KIN			1870					2 103					2 804		
BA::		4	-41- / 1	1 - 12 /	/ A -1 -1:	4!	1	£			-4			-ll-		4	_	
	num concret		jtn / F	ielix /	Add	itiona	ıı rein	Torce	emeni	/ Cei	ntre s	pacıı	ng an	a eag	je ais	tance	•	
Minimum cond																		
Cube	f cm, 0,	cube, 150	MPa	23	28	34	38	43	23	28	34	38	43	23	28	34	38	43
Cylinder	f cm, 0, cylind	der, Ø 150	MPa	19	23	28	31	35	19	23	28	31	35	19	23	28	31	35
Helix																		
Outer diameter			mm	270	230	225	220	220	280	260	255	250	250	330	280	275	260	250
Bar diameter 2)			mm	14	12	12	12	12	14	12	12	12	12	14	14	14	14	14
Length approxi	mately		mm	282	256	231	256	256	282	281	281	281	281	332	332	332	332	282
Pitch			mm	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Number of pitch	nes		—	6	6	5	6	6	6	6	6	6	6	7	7	7	7	6
Distance		Е	mm	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Additional rein	forcement																	
Number of stirre	ups		mm	4	6	5	4	5	5	5	5	4	5	7	6	5	5	6
Bar diameter 2)			mm	12	12	12	14	14	12	14	12	14	14	12	14	16	16	14
Spacing			mm	70	45	50	55	50	60	55	55	65	55	60	55	70	70	50
Distance from a	anchor plate	F	mm	33	33	33	33	33	35	35	35	35	35	35	35	35	35	35
Minimum outer	dimensions	$B \times B$	mm	310	290	260	260	260	330	300	290	290	290	390	350	320	310	290
Centre spacing	g and edge o	listance)															
Minimum centre	e spacing	ac, bc	mm	330	305	280	275	275	350	320	310	310	310	405	370	340	325	310
Minimum edge	distance	a' _e , b' _e	mm	155	145	130	130	130	165	150	145	145	145	195	175	160	155	145

^{1)....}Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

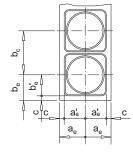
²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

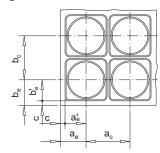
Internal Post-tensioning System

Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance


Annex 19

Page 47 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	1306	1506	1606
Strand arrangement		\$00\$	

7-wire prestressing steel strand – Nominal diameter **15.7 mm** … Nominal cross-sectional area **150 mm²**Maximum characteristic tensile strength **1860 MPa** ¹⁾

	Tendon								
Cross-sectional area A _p	$\mathrm{mm^2}$	1 950	2 250	2 400					
Char. value of maximum force F _{pk}	kN	3 627	4 185	4 464					
Char. value of 0.1% proof force F _{p0.1}	kN	3 198	3 690	3 936					
Max. prestressing force $0.90 \cdot F_{p0.1}$	kN	2 878	3 321	3 542					
Max. overstressing force $0.95 \cdot F_{\text{p0.1}}$	kN	3 038	3 506	3 739					

Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance Minimum concrete strength Cube **MPa** fcm, 0, cube, 150 Cylinder **MPa** $f_{cm, 0, cylinder, \emptyset}$ 150 Helix Outer diameter mm Bar diameter 2) mm Length approximately mm Pitch mm Number of pitches Distance Ε mm Additional reinforcement Number of stirrups mm Bar diameter 2) mm Spacing mm F Distance from anchor plate mm Minimum outer dimensions $\mathsf{B} \times \mathsf{B}$ mm Centre spacing and edge distance Minimum centre spacing ac, bc mm Minimum edge distance a'_e, b'_e mm

²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

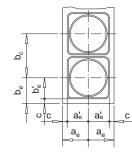
Internal Post-tensioning System

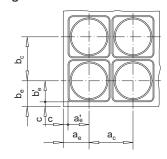
Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

Annex 20

¹⁾....Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

Page 48 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	1906	2206	2406
Strand arrangement			

7-wire prestressing steel strand – Nominal diameter **15.7 mm** … Nominal cross-sectional area **150 mm²**Maximum characteristic tensile strength **1860 MPa** ¹⁾

		Tendon		
Cross-sectional area A _p	mm ²	2 850	3 300	3 600
Char. value of maximum force F _{pk}	kN	5 301	6 138	6 696
Char. value of 0.1 % proof force $F_{p0.1}$	kN	4 674	5412	5 904
Max. prestressing force $0.90 \cdot F_{p0.1}$	kN	4 207	4 871	5 3 1 4
Max. overstressing force $0.95 \cdot F_{p0.1}$	kN	4 440	5 141	5 609

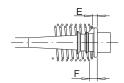
Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance Minimum concrete strength Cube fcm, 0, cube, 150 MPa Cylinder fcm, 0, cylinder, Ø 150 Helix Outer diameter mm Bar diameter 2) mm Length approximately mm Pitch mm Number of pitches Distance mm Additional reinforcement Number of stirrups mm Bar diameter mm Spacing mm Distance from anchor plate mm Minimum outer dimensions $\mathsf{B} \times \mathsf{B}$ mm Centre spacing and edge distance 440 420 460 435 Minimum centre spacing a_c, b_c mm a'_e, b'_e 210 200 Minimum edge distance mm

²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

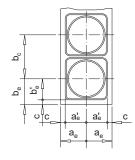
Internal Post-tensioning System

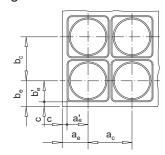
Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

Annex 21


^{1)....}Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

Page 49 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	2506	2706	3106
Strand arrangement	**************************************	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	8

7-wire prestressing steel strand – Nominal diameter 15.7 mm ... Nominal cross-sectional area 150 mm²

Maximum characteristic tensile strength 1860 MPa 1)

	Tendon		
mm ²	3 750	4 050	4 650
kN	6 975	7 533	8 649
kN	6 150	6 642	7 626
kN	5 535	5 978	6 863
kN	5 843	6 3 1 0	7 245
	kN kN kN	kN 6975 kN 6150 kN 5535	kN 6 975 7 533 kN 6 150 6 642 kN 5 535 5 978

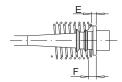
Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance Minimum concrete strength Cube f_{cm, 0, cube, 150} MPa Cylinder **MPa** fcm, 0, cylinder, Ø 150 Helix Outer diameter mm Bar diameter 2) mm Length approximately mm Pitch mm Number of pitches Ε Distance mm Additional reinforcement Number of stirrups mm Bar diameter mm Spacing mm Distance from anchor plate mm $\mathsf{B} \times \mathsf{B}$ Minimum outer dimensions mm Centre spacing and edge distance Minimum centre spacing ac, bc mm Minimum edge distance a'_e, b'_e mm

²⁾....Bar diameter of 14 mm can be replaced by 16 mm.

Internal Post-tensioning System

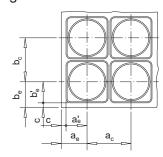
Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance

Annex 22


^{1)....}Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

Page 50 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	3706	4206	4306
Strand arrangement			

7-wire prestressing steel strand – Nominal diameter 15.7 mm ... Nominal cross-sectional area 150 mm² Maximum characteristic tensile strength 1860 MPa 1)

		Tendon		
Cross-sectional area A _p	$\mathrm{mm^2}$	5 550	6 300	6 450
Char. value of maximum force F _{pk}	kN	10 323	11 718	11 997
Char. value of 0.1% proof force F _{p0.1}	kN	9 102	10 332	10 578
Max. prestressing force 0.90 · F _{p0.1}	kN	8 192	9 299	9 520
Max. overstressing force $0.95 \cdot F_{p0.1}$	kN	8 647	9 815	10 049

Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance Minimum concrete strength Cube **MPa f**cm, 0, cube, 150 Cylinder **MPa** f_{cm, 0, cylinder, ∅ 150} Helix Outer diameter mm Bar diameter mm Length approximately mm Pitch mm Number of pitches Distance E mm Additional reinforcement Number of stirrups mm Bar diameter mm Spacing mm Distance from anchor plate F mm Minimum outer dimensions $\mathsf{B} \times \mathsf{B}$ mm Centre spacing and edge distance Minimum centre spacing ac, bc mm

Minimum edge distance

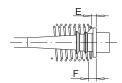
a'e. b'e

mm

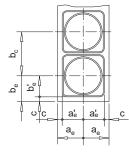
Internal Post-tensioning System

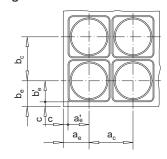
Minimum concrete strength – Helix – Additional reinforcement - Centre spacing and edge distance Annex 23

of European Technical Assessment ETA-09/0286 of 19.09.2018


1)....Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1860 MPa may also be used.

Page 51 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018


Stressing and fixed anchorage / coupler



 $a_e = a'_e + c$ $b_e = b'_e + c$ c ... Concrete cover

Centre spacing and edge distance

BBR VT CONA CMI BT	4806	5506	6106
Strand arrangement			

7-wire prestressing steel strand – Nominal diameter 15.7 mm ... Nominal cross-sectional area 150 mm²

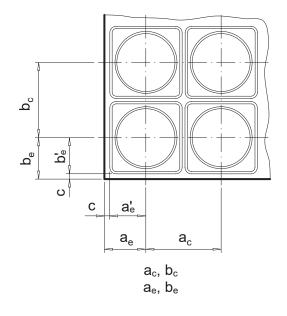
Maximum characteristic tensile strength 1 860 MPa ¹⁾

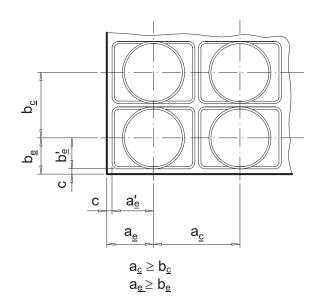
	Tendon		
$\mathrm{mm^2}$	7 200	8 250	9 150
kN	13 392	15 345	17 019
kN	11 808	13 530	15 006
kN	10 627	12 177	13 505
kN	11 218	12 854	14 256
	kN kN kN	mm ² 7 200 kN 13 392 kN 11 808 kN 10 627	mm² 7 200 8 250 kN 13 392 15 345 kN 11 808 13 530 kN 10 627 12 177

Minimum concrete strength / Helix / Additional reinforcement / Centre spacing and edge distance Minimum concrete strength Cube **MPa f**cm, 0, cube, 150 Cylinder **MPa** fcm, 0, cylinder, Ø 150 Helix Outer diameter mm Bar diameter mm Length approximately mm Pitch mm Number of pitches Distance mm Additional reinforcement Number of stirrups mm Bar diameter mm Spacing mm Distance from anchor plate mm Minimum outer dimensions $\mathsf{B} \times \mathsf{B}$ mm Centre spacing and edge distance Minimum centre spacing 940 940 ac, bc mm Minimum edge distance a'_e, b'_e mm

^{1)....}Prestressing steel strand with nominal diameter of 15.3 mm, cross-sectional area of 140 mm² or with characteristic tensile strength below 1 860 MPa may also be used.

Internal Post-tensioning System


Minimum concrete strength – Helix – Additional reinforcement – Centre spacing and edge distance


Annex 24

Page 52 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Centre spacing and edge distance

Modification of centre spacing and edge distance are in accordance with the Clauses 1.8 and 2.2.3.5.

$$b_{\underline{c}} \quad \begin{cases} \geq 0.85 \cdot b_c \\ \text{and} \\ \geq \text{Helix, outside diameter} \end{cases}$$

$$\begin{array}{lll} a_{\underline{c}} & \geq \frac{A_c}{b_{\underline{c}}} \\ \\ A_c & = a_c \cdot b_c & \leq & a_{\underline{c}} \cdot b_{\underline{c}} \end{array}$$

Corresponding edge distances

$$a_{\underline{e}} = \frac{a_{\underline{c}}}{2} - 10 \text{ mm} + c$$
 and $b_{\underline{e}} = \frac{b_{\underline{c}}}{2} - 10 \text{ mm} + c$

c..... Concrete cover

1) Except the dimensions of helix, the outer dimensions of the additional reinforcement are adjusted accordingly. Further modifications of reinforcement are in accordance with Clause 2.2.3.5.

Internal Post-tensioning System

Modification of centre spacing and edge distance

Annex 25

Page 53 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

1) Preparatory work

The components of the prestressing kit are stored so as to avoid any damage or corrosion.

2) Anchorage recesses

Adequate space to accommodate and to use the prestressing jack is ensured, see also the Clauses 1.2.6 and 2.2.3.3.

3) Fastening the bearing trumplates

Four holes are provided to fasten the bearing trumplates to the formwork. The trumpet is screwed into the bearing trumplate. The helix is either welded to the bearing trumplate by means of radial bars, see also Clause 2.2.4.6, or positioned by fastening it to the existing reinforcement.

4) Placing of the sheaths

The sheaths are placed on supports with spacing according to Clause 1.6 and minimum radii of curvature according to Clause 1.9. The sheaths are jointed in a leak-proof way. The sheaths are supported such that any movement is prevented.

The same applies for prefabricated tendons.

5) Installation of tensile elements (prestressing steel)

The prestressing steel is pushed or pulled into the sheath before or after concreting of the structure.

6) Installation of the inaccessible fixed anchorages

After passing the strands through the anchor head, they are anchored individually in the cones by means of ring wedges. After assembling the wedges are secured with springs or a wedge retaining plate. An alternative is pre-locking each individual strand with ~ 0.5 · F_{pk} and applying a wedge retaining plate.

7) Installation of fixed coupler anchor head 2.BA

The function of the fixed coupler is to connect two tendons, whereas the first tendon is stressed before the second tendon is installed and stressed.

The coupling is achieved by pushing the strands into the already tensioned coupler anchor head K, side 2.BA (outer pitch circle), whereby the strands are marked to check the correct depth of penetration.

The coupler anchor head H, 2.BA is assembled with ring wedges and a wedge retaining plate. It is connected to the already tensioned coupler anchor head H, 1.BA by means of a threaded coupler sleeve.

8) Assembly of movable coupler

The movable coupler serves to lengthen unstressed tendons. The axial movement during stressing is ensured by a sheathing box suitable to the expected elongation at the position of the coupler.

The assembly of the coupler anchor head is performed in accordance with Point 7) and Clause 1.2.5. The transverse forces at the end of the trumpet are covered by steel deflector rings.

9) Checking the tendons before concreting

Before concreting the structure, fastening and position of the entire tendon are checked and corrected if necessary. The sheaths are checked for any damage.

Internal Post-tensioning System

Description of installation

Annex 26

10) Assembly of anchor head/coupler anchor head 1.BA

After passing the strands through the anchor head, they are anchored individually in the cones by means of ring wedges. The same applies for the coupler anchor head in case of fixed couplers in the first construction stage.

11) Prestressing

At the time of stressing the mean concrete compressive strength is at least according to Table 6 and the provisions of Clause 1.10. Stressing and possible wedging is carried out with a suitable prestressing jack and in accordance with Clause 2.2.4.2.

The elongation of the tendon and the prestressing forces is checked and recorded systematically during the stressing operation.

Restressing the tendons is allowed in accordance with Clause 2.2.4.3.

12) Grouting the tendons

The grout is injected through the inlet holes until it escapes from the outlet tubes with the same consistency. All vents and grouting inlets are sealed immediately after grouting, see also Clause 2.2.4.5.1.

Grease or wax are injected in accordance with Clause 2.2.4.5.2 and the recommendations of the supplier.

More detailed information on installation can be obtained from the ETA holder.

Internal Post-tensioning System Description of installation

Annex 27

Seven-wire strands according to prEN 10138-3 1)

	•		1	r	r	r
Steel name			Y1770S7	Y1860S7	Y1770S7	Y1860S7
Tensile strength	R _m	MPa	1 770	1 860	1 770	1 860
Diameter	d	mm	15.3	15.3	15.7	15.7
Nominal cross-sectional area	Ap	mm ²	140	140	150	150
Nominal mass per metre	M	kg/m	1.0	93	1.1	72
Permitted deviation from nominal m	om nominal mass %		± 2			
Characteristic value of maximum force	F _{pk}	kN	248	260	266	279
Maximum value of maximum force	F _{m, max}	kN	285	299	306	321
Characteristic value of 0.1% proof force ²⁾	F _{p0.1}	kN	218	229	234	246
Minimum elongation at maximum force, $L_0 \ge 500 \text{ mm}$	A _{gt}	%	3.5			
Modulus of elasticity	Ep	MPa	195 000 ³⁾			

- 1) Suitable strands according to standards and regulations in force at the place of use may also be used.
- ²⁾ For strands according to prEN 10138-3, 09.2000, the value is multiplied by 0.98.
- 3) Standard value

Internal Post-tensioning System Prestressing steel strand specifications

Annex 28

Contents of the prescribed test plan

Strand

EN 447

Steel strip duct

Cement, admixtures,

additions of filling materials as per

Subject / type of control		Test or control method	Criteria, if any	Minimum number of samples	Minimum frequency of control
	Material	Checking 1)	2)	100 %	continuous
Bearing trumplate	Detailed dimensions	Testing	2)	3 %, ≥ 2 specimens	continuous
	Visual inspection 3)	Checking	2)	100 %	continuous
	Traceability			bulk	
	Material	Checking 1)	2)	100 %	continuous
Anchor head, Coupler anchor head,	Detailed dimensions	Testing	2)	5 %, ≥ 2 specimens	continuous
Coupler sleeve	Visual inspection 3)	Checking	2)	100 %	continuous
	Traceability			full	
	Material	Checking 1)	2)	100 %	continuous
	Treatment, hardness	Testing	2)	0.5 %, ≥ 2 specimens	continuous
Ring wedge	Detailed dimensions	Testing	2)	5 %, ≥ 2 specimens	continuous
	Visual inspection 3)	Checking	2)	100 %	continuous
	Traceability		•	full	
	Material	Checking	2), 4)	100 %	continuous

Testing

Checking

Checking 6)

Testing

Checking 6)

2)

2)

2)

2)

2)

1 sample

1 sample

100 %

3 %,

≥ 2 specimens

100 %

full

full

- 1) Checking by means of an inspection report 3.1 according to EN 10204.
- 2) Conformity with the specifications of the component
- ³⁾ Successful visual inspection does not need to be documented.

Dimension

Material

Dimension

Traceability

Traceability

Material

Visual inspection

- 4) Checking of relevant certificate as long as the basis of "CE"-marking is not available.
- Maximum between a coil and 7 tons is taken into account
- 6) Checking of relevant certificate, CE marking and declaration of performance or, if basis for CE marking is not available, certificate of supplier

Traceability full Full traceability of each component to its raw material.

Material Defined according to technical specification deposited by the supplier

Detailed dimension Measuring of all the dimensions and angles according to the specification given in the test plan

Visual inspection Main dimensions, correct marking and labelling, surface, corrosion, coating, etc.

Treatment, hardness Surface hardness, core hardness and treatment depth

Internal Post-tensioning SystemContents of the prescribed test plan

Annex 29

each coil or

every 7 tons 5)

continuous

continuous

continuous

Audit testing

Subject / type of cont	rol	Test or control method	Criteria, if any	Minimum number of samples 1)	Minimum frequency of control
De arion to mondate	Material	Checking and testing, hardness and chemical ²⁾	3)	1	1/year
Bearing trumplate	Detailed dimensions	Testing	3)	1	1/year
	Visual inspection	Checking	3)	1	1/year
Anchor head, Coupler anchor	Material	Checking and testing, hardness and chemical ²⁾	3)	1	1/year
head, Coupler sleeve	Detailed dimensions	Testing	3)	1	1/year
	Visual inspection	Checking	3)	1	1/year
	Material	Checking and testing, hardness and chemical ²⁾	3)	2	1/year
	Treatment, hardness	Checking and testing, hardness profile	3)	2	1/year
Ring wedge	Detailed dimensions	Testing	3)	1	1/year
	Main dimensions, surface hardness	Testing	3)	5	1/year
	Visual inspection	Checking	3)	5	1/year
Single tensile element test		According EAD 160004-00 Annex C.)-0301,	1 series	1/year

- If the kits comprise different kinds of anchor heads e.g. with different materials, different shape, different wedges, etc., then the number of samples are understood as per kind.
- ²⁾ Testing of hardness and checking of chemical composition by means of an inspection report 3.1 according to EN 10204.
- 3) Conformity with the specifications of the components

Material Defined according to technical specification deposited by the ETA holder at the

Notified body

Detailed dimension Measuring of all the dimensions and angles according to the specification given in

the test plan

Visual inspection Main dimensions, correct marking and labelling, surface, corrosion, coating, etc.

Treatment, hardness Surface hardness, core hardness and treatment depth

Internal Post-tensioning System Audit testing

Annex 30

Nº	Essential Characteristic	Clause	Intended use Line № according to Clause 2.1, Table 8		
			1	2	3
1	Resistance to static load	3.2.1.1	+	+	+
2	Resistance to fatigue	3.2.1.2	+	+	+
3	Load transfer to the structure	3.2.1.3	+	+	+
4	Friction coefficient	3.2.1.4	+	+	+
5	Deviation, deflection (limits) for internal bonded and internal unbonded tendon	3.2.1.5	+	+	+
6	Assessment of assembly	3.2.1.6	+	+	+
7	Corrosion protection	3.2.1.7	+	+	+
8	Reaction to fire	3.2.2.1	+	+	+
9	Content, emission and/or release of dangerous substances	3.2.3.1	+	+	+
10	Resistance to static load under cryogenic conditions for applications with anchorage/ coupling outside the possible cryogenic zone	3.2.4.1	_	_	+

Kev

+.....Essential characteristic relevant for the intended use

—.....Essential characteristic not relevant for the intended use

For combinations of intended uses, the essential characteristics of all intended uses composing the combination are relevant.

Internal Post-tensioning System Essential characteristics for the intended uses

Annex 31

electronic copy

Page 59 of European Technical Assessment ETA-09/0286 of 19.09.2018, replaces European technical approval ETA-09/0286 with validity from 30.06.2013 to 29.06.2018

Reference documents

European Assessment Documents

EAD 160004-00-0301 Post-Tensioning Kits for Prestressing of Structures EAD 160027-00-0301 Special filling products for post-tensioning kits

Eurocodes

Eurocode 2	Eurocode 2: Design of concrete structures
Eurocode 3	Eurocode 3: Design of steel structures
Eurocode 6	Eurocode 6: Design of masonry structures

Standards

EN 206+A1, 11.2016	Concrete – Specification, performance, production and conformity
EN 445, 10.2007	Grout for prestressing tendons – Test methods
EN 446, 10.2007	Grout for prestressing tendons – Grouting procedures
EN 447, 10.2007	Grout for prestressing tendons – Basic requirements
EN 523, 08.2003	Steel strip sheaths for prestressing tendons – Terminology, requirements, quality control
EN 1561, 10.2011	Founding – Grey cast irons
EN 1563, 12.2011	Founding – Spheroidal graphite cast irons
EN 10025-2, 11.2004 EN 10025-2/AC, 06.2005	Hot rolled products of structural steels – Part 2: Technical delivery conditions for non-alloy structural steels
EN 10083-1, 08.2006	Steels for quenching and tempering – Part 1: General technical delivery conditions
EN 10083-2, 08.2006	Steels for quenching and tempering - Part 2: Technical delivery

	conditions for non alloy steels
EN 10084, 04.2008	Case hardening steels – Technical delivery conditions
EN 10204, 10.2004	Metallic products – Types of inspection documents
EN 10210-1, 04.2006	Hot finished structural hollow sections of non-alloy and fine grain steels – Part 1: Technical delivery conditions
EN 10216_1 12 2013	Seamless steel tubes for pressure nurnoses - Technical delivery

Seamless steel tubes for pressure purposes – Technical delivery conditions - Part 1: Non-alloy steel tubes with specified room

temperature properties

EN 10217-1, 05.2002	Welded steel tubes for pressure purposes - Technical delivery
EN 10217-1/A1, 01.2005	conditions - Part 1: Non-alloy steel tubes with specified room
	temperature properties
EN 10010 1 04 0006	Cold formed yielded structural bellow sections of non-client and fine

Cold formed welded structural hollow sections of non-alloy and fine EN 10219-1, 04.2006 grain steels – Part 1: Technical delivery conditions

EN 10255+A1, 04.2007 Non-Alloy steel tubes suitable for welding and threading – Technical

delivery conditions

Internal Post-tensioning System

Reference documents

Annex 32

EN 10270-1, 10.2011	Steel wire for mechanical springs – Part 1: Patented cold drawn unalloyed steel wire
EN 10277-2, 03.2008	Bright steel products – Technical delivery conditions – Part 2: Steels for general engineering purposes
EN 10305-5, 01.2010	Steel tubes for precision applications – Technical delivery conditions – Part 5: Welded cold sized square and rectangular tubes
EN ISO 17855-1, 10.2014	Plastics – Polyethylene (PE) moulding and extrusion materials – Part 1: Designation system and basis for specifications
EN ISO 19069-1, 03.2015	Plastics – Polypropylene (PP) moulding and extrusion materials – Part 1: Designation system and basis for specifications
prEN 10138-3, 09.2000	Prestressing steels – Part 3: Strand
prEN 10138-3, 08.2009	Prestressing steels – Part 3: Strand
CWA 14646, 01.2003	Requirements for the installation of post-tensioning kits for prestressing of structures and qualification of the specialist company and its personnel
98/456/EC	Commission decision 98/456/EC of 3 July 1998 on the procedure for attesting the conformity of construction products pursuant to Article 20 (2) of Council Directive 89/106/EEC as regards posttensioning kits for the prestressing of structures, Official Journal of the European Communities L 201 of 17 July 1998, p. 112
305/2011	Regulation (EU) № 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC, OJ L 88 of 4 April 2011, p. 5, amended by Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, OJ L 157 of 27.05.2014, p. 76 and Commission Delegated Regulation (EU) № 574/2014 of 21 February 2014, OJ L 159 of 28.05.2014, p. 41
568/2014	Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014 amending Annex V to Regulation (EU) № 305/2011 of the

Internal Post-tensioning System

Reference documents

Annex 33

Materialprüfungsamt Nordrhein-Westfalen

Prüfen · Überwachen · Zertifizieren

Certificate of constancy of performance 0432-CPR-00299-1.4 (EN)

Version 01

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction products Regulation or CPR), this certificate applies to the construction product

BBR VT CONA CMI BT – Internal Post-tensioning System with 02 to 61 Strands

Bonded or unbonded post-tensioning kits for prestressing of structures with strands

placed on the market under the name or trade mark of

BBR VT International Ltd

Ringstrasse 2 8603 Schwerzenbach (ZH) / Switzerland

and produced in the manufacturing plant(s)

BBR VT International Ltd

Ringstrasse 2 8603 Schwerzenbach (ZH) / Switzerland

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the

ETA-09/0286, issued on 19.09.2018

and

EAD 160004-00-0301

under system 1+ for the performance set out in the ETA are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

This certificate was first issued on 30.07.2010 and will remain valid until 20.09.2023 as long as neither the ETA, the EAD, the construction product, the AVCP methods nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

Dortmund, 21.09.2018

by order

Dipl.-Ing. Hönig

Head of Certification Body (Dep. 21)

This Certificate consists of 1 page.

This Certificate replaces the Certificate no. 0432-CPD-11 9181-1.4/2 dated 30.06.2013.

The original of this document was issued in German language.
In case of doubt only the German version is valid.

DAKKS

Deutsche
Akkreditierungsste
D-ZE-11142-01-01

BBR VT International Ltd

Ringstrasse 2 8603 Schwerzenbach (ZH) Switzerland

Tel +41 44 806 80 60 Fax +41 44 806 80 50

www.bbrnetwork.com info@bbrnetwork.com

BBR VT International Ltd

Technical Headquarters and Business Development Centre Switzerland

